Top Picks: new discover of 37366-09-9

Do you like my blog? If you like, you can also browse other articles about this kind. SDS of cas: 37366-09-9. Thanks for taking the time to read the blog about 37366-09-9

In an article, published in an article, once mentioned the application of 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer,molecular formula is C12H12Cl4Ru2, is a conventional compound. this article was the specific content is as follows.SDS of cas: 37366-09-9

Ruthenium(II) complexes bearing a naphthalimide fragment: A modular dye platform for the dye-sensitized solar cell

Cycloruthenated complexes of the type [RuII(N^N) 2(C^N)]+ (N^N = substituted 2,2?-bipyridine; C^N = substituted 3-(2?-pyridyl)-1,8-naphthalimide ligand) are shown to generate high power conversion efficiencies (PCEs) in the dye-sensitized solar cell (DSSC). It is shown that substitution of the pyridine ring of the C^N ligand with conjugated groups can enhance molar absorption extinction coefficients, while the electron density imparted on the metal center is alleviated by the 1,8-naphthalimide fragment. This latter feature maintains a Ru(III)/Ru(II) redox couple more positive than 0.8 V versus NHE, thereby accommodating regeneration of the oxidized dye by an iodide-based redox mediator. This dye platform can consequently be modulated at various sites to enhance light absorption and suppress recombination between the redox mediator and the TiO2 surface without compromising dye regeneration, thereby maintaining device PCEs as high as 7%. We also introduce a new phosphine-based coadsorbent, bis(2-ethylhexyl)phosphinic acid (BEPA), which is significantly easier to synthesize than the widely used bis(3,3-dimethylbutyl)phosphinic acid (DINHOP) while also facilitating high dye loading.

Do you like my blog? If you like, you can also browse other articles about this kind. SDS of cas: 37366-09-9. Thanks for taking the time to read the blog about 37366-09-9

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI