Top Picks: new discover of 15746-57-3

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.SDS of cas: 15746-57-3. In my other articles, you can also check out more blogs about 15746-57-3

15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru, belongs to ruthenium-catalysts compound, is a common compound. In a patnet, once mentioned the new application about 15746-57-3, SDS of cas: 15746-57-3

XPS studies of Ru-polypyridine complexes for solar cell applications

A series of Ru-polypyridine dyes has been studied with electron spectroscopy using AlKalpha and synchrotron radiation. Both pure complexes and complexes adsorbed on nanostructured TiO2 (anatase) surfaces have been examined and special emphasis was given to the dye complex cis-bis(4,4?-dicarboxy-2,2?-bipyridine)-bis-(isothiocyanato)- ruthenium(II) [Ru(dcbpy)2(NCS)2]. The measurements provide information concerning the energy level matching between the dyes and the TiO2, which is of importance in photoinduced charge transfer reactions and in applications such as dye-sensitized solar cells. The measurements also support the general picture of bonding of carboxylated complexes to the surfaces via the carboxyl groups of a single bi-isonicotinic acid ligand, and that, for Ru(dcbpy)2(NCS)2, the NCS-ligand-TiO2 interaction is small. Corroborative support is provided via quantum chemical calculations on the ligand (bi-isonicotinic acid) adsorbed on a TiO2 anatase (101) surface.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.SDS of cas: 15746-57-3. In my other articles, you can also check out more blogs about 15746-57-3

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI