Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn¡¯t involve a screen. 15746-57-3, C20H16Cl2N4Ru. A document type is Article, introducing its new discovery., Recommanded Product: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)
Photoactivation of Cu Centers in Metal-Organic Frameworks for Selective CO2 Conversion to Ethanol
CO2 hydrogenation to ethanol is of practical importance but poses a significant challenge due to the need of forming one C-C bond while keeping one C-O bond intact. CuI centers could selectively catalyze CO2-to-ethanol conversion, but the CuI catalytic sites were unstable under reaction conditions. Here we report the use of low-intensity light to generate CuI species in the cavities of a metal-organic framework (MOF) for catalytic CO2 hydrogenation to ethanol. X-ray photoelectron and transient absorption spectroscopies indicate the generation of CuI species via single-electron transfer from photoexcited [Ru(bpy)3]2+-based ligands on the MOF to CuII centers in the cavities and from Cu0 centers to the photoexcited [Ru(bpy)3]2+-based ligands. Upon light activation, this Cu-Ru-MOF hybrid selectively hydrogenates CO2 to EtOH with an activity of 9650 mumol gCu-1 h-1 under 2 MPa of H2/CO2 = 3:1 at 150 C. Low-intensity light thus generates and stabilizes CuI species for sustained EtOH production.
Interested yet? Keep reading other articles of 15746-57-3!, Recommanded Product: Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II)
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI