Application of 10049-08-8. Let¡¯s face it, organic chemistry can seem difficult to learn. Especially from a beginner¡¯s point of view. Like 10049-08-8, Name is Ruthenium(III) chloride. In a document type is Article, introducing its new discovery.
Electrochemical preparation of photosensitive porous n-type Si electrodes, modified with Pt and Ru nanoparticles
A novel electrochemical procedure for preparation of the very stable, thin modifying layer onto the n-type Si surface was elaborated. The modification consisted of platinum or/and ruthenium ultrafine particles etched into the porous Si film. A unique sequence of modifications was applied: at first the metal particles were evenly electrodeposited onto a flat silicon surface, and in the next electrochemical step the porous structure was produced. The platinum coverage and mean particle diameter were well controlled by the electrochemical programs. All the attempts and progress in modifications were monitored by scanning electron microscope (SEM) observations. Furthermore, the materials obtained were compared with the non-porous, Pt or/and Ru modified electrodes by testing them as anodes in the photoelectrochemical (PEC) cell with organic Br2/2Br- solution. In general, the porous photo-anodes gave higher output powers and the light-to-electricity conversion efficiencies. The best performance was observed for the PEC cell employing the porous anode with sequentially electrodeposited Ru and Pt particles, respectively (PS-Si/Ru/Pt).11″PS-Si” means the porous silicon film; “Si/Pt/Ru” describes the sequence of metal depositions onto Si, in this case the Pt deposition is followed by the Ru deposition. This cell maintained good electrical parameter values during the 2-week tests, having a maximum output power equal to 0.23 mW/cm2 and a cell conversion efficiency of 8.5%. The PS-Si/Pt photo-anode gained 0.21 mW/cm2 and 7.8%, respectively.
If you are interested in 10049-08-8, you can contact me at any time and look forward to more communication.Application of 10049-08-8
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI