Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn¡¯t involve a screen. 10049-08-8, Cl3Ru. A document type is Article, introducing its new discovery., Safety of Ruthenium(III) chloride
Comparison of high-throughput electrochemical methods for testing direct methanol fuel cell anode electrocatalysts
The screening and testing of fuel cell electrocatalysts often involves comparisons under conditions that do not closely match their use in membrane electrode assemblies. We compared the activities of several commercial and homemade Pt and PtRu catalysts for electrochemical methanol oxidation by four different techniques; disk electrode linear sweep voltammetry in aqueous methanol/sulfuric acid solutions, optical fluorescence detection in aqueous methanol solutions containing a fluorescent acid-base indicator, steady-state voltammetry in a 25 electrode array fuel cell with a large common counter electrode, and steadystate voltammetry in a conventional direct methanol fuel cell. The fluorescence detection method, which is a high-throughput technique developed for large arrays of electrocatalysts, can distinguish active from inactive catalysts, but it does not accurately rank active catalysts. Both the disk electrode and array fuel cell methods gave a reliable ranking of the catalysts studied. The best agreement occurred between the array fuel cell and single electrode fuel cell catalyst rankings. A wide range of catalytic activities was found for PtRu catalysts of the same nominal composition that were prepared by different methods.
Interested yet? Keep reading other articles of 10049-08-8!, Safety of Ruthenium(III) chloride
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI