15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru, belongs to ruthenium-catalysts compound, is a common compound. In a patnet, once mentioned the new application about 15746-57-3, Product Details of 15746-57-3
Controlling ground and excited state properties through ligand changes in ruthenium polypyridyl complexes
The capture and storage of solar energy requires chromophores that absorb light throughout the solar spectrum. We report here the synthesis, characterization, electrochemical, and photophysical properties of a series of Ru(II) polypyridyl complexes of the type [Ru(bpy)2(N-N)]2+ (bpy = 2,2-bipyridine; N-N is a bidentate polypyridyl ligand). In this series, the nature of the N-N ligand was altered, either through increased conjugation or incorporation of noncoordinating heteroatoms, as a way to use ligand electronic properties to tune redox potentials, absorption spectra, emission spectra, and excited state energies and lifetimes. Electrochemical measurements show that lowering the phi* orbitals on the N-N ligand results in more positive Ru3+/2+ redox potentials and more positive first ligand-based reduction potentials. The metal-to-ligand charge transfer absorptions of all of the new complexes are mostly red-shifted compared to Ru(bpy)32+ (lambdamax = 449 nm) with the lowest energy MLCT absorption appearing at lambdamax = 564 nm. Emission energies decrease from lambdamax = 650 nm to 885 nm across the series. One-mode Franck-Condon analysis of room-temperature emission spectra are used to calculate key excited state properties, including excited state redox potentials. The impacts of ligand changes on visible light absorption, excited state reduction potentials, and Ru3+/2+ potentials are assessed in the context of preparing low energy light absorbers for application in dye-sensitized photoelectrosynthesis cells.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Product Details of 15746-57-3. In my other articles, you can also check out more blogs about 15746-57-3
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI