Reference of 37366-09-9. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer
Reactivity and electrochemical behavior of ruthenium dithiolene complexes with coordinatively unsaturated metal centers: Cycloaddition and dimerization reactions
The novel ruthenium dithiolene complexes [(arene)Ru{S2C 2(COOMe)2}] (arene = C6H6 (1a), C6H4(Me)(iPr) (1b), C6Me6 (1c)) were synthesized. The equilibrium between complex 1a and the corresponding dimer [(C6H6)Ru{S2C2(COOMe) 2}]2 (1a?) was confirmed in solution. The reaction of complex 1a with dimethyl- or diethylacetylene dicaboxylate gave the alkene-bridged adducts [(C6H6)Ru{S2C 2(COOMe)2}{C2(COOR)2}] (R = Me (2a), Et (3a)) as [2 + 2] cycloaddition products formally. The reactions of complex 1a with diazo compounds also gave the alkylidene-bridged adducts [(C 6H6)Ru{S2C2(COOMe) 2}(CHR)] (R = H (4a), SiMe3 (5a), COOEt (6a)) as [2 + 1] cycloaddition products. The electrochemical behavior of complex 1a was investigated. The reductant of complex 1a was a stable species for several minutes. The oxidant of complex 1a was very unstable; the cation 1a+ formed was immediately converted to the corresponding cationic dimer 1a?+. The cationic dimer 1a?+ was stable for several minutes, and it was rapidly and quantitatively converted to the neutral complex 1a when it was reduced.
If you are hungry for even more, make sure to check my other article about 37366-09-9. Reference of 37366-09-9
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI