Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn¡¯t involve a screen. 20759-14-2, Cl3H2ORu. A document type is Article, introducing its new discovery., category: ruthenium-catalysts
Synthesis of an ionic paramagnetic ruthenium(III) complex and its application as an efficient and recyclable catalyst for the transfer hydrogenation of ketones
A novel ionic complex, bis[1-butyl-2-(diphenylphosphanyl)-3- methylimidazolium]tetrachloridoruthenium(III) hexafluorophosphate (2), has been synthesized and fully characterized. The single-crystal X-ray diffraction analysis showed that 2 is composed of an Ru complex cation and PF 6- anion. The cation has a highly symmetrical Ru-centered octahedron geometry with four Cl atoms in the equatorial plane and two imidazolium-substituted phosphane ligands in the axial positions. It exhibits paramagnetism due to the presence of one unpaired electron in the phosphane-ligated low-spin RuIII complex. Complex 2 exhibited good catalytic performance in the transfer hydrogenation of a wide range of ketones by using alcohols as hydrogen donors. Owing to its high polarity, good thermal stability, and insensitivity to moisture and oxygen, complex 2 could be used in six catalytic cycles in the transfer hydrogenation of acetophenone without any obvious loss of activity. A novel ionic complex 2 containing an RuIII cation and PF6- anion has been synthesized. The Ru III cation possesses ideal octahedral geometry and exhibits paramagnetism due to the presence of one unpaired electron in the phosphane-ligated low-spin RuIII complex. Complex 2 proves to be an efficient and recyclable catalyst for the transfer hydrogenation of ketones with alcohols as hydrogen donors. Copyright
Interested yet? Keep reading other articles of 20759-14-2!, category: ruthenium-catalysts
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI