A new application about 20759-14-2

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Quality Control of: Ruthenium(III) chloride hydrate. In my other articles, you can also check out more blogs about 20759-14-2

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 20759-14-2, Name is Ruthenium(III) chloride hydrate, molecular formula is Cl3H2ORu. In a Article£¬once mentioned of 20759-14-2, Quality Control of: Ruthenium(III) chloride hydrate

Syntheses, characterization, and DFT investigation of new mononuclear acetonitrile- and chloro-ruthenium(II) terpyridine complexes

A series of mononuclear acetonitrile complexes of the type [Ru(CH3CN)(L)(terpy)]2+ {L = phen (1), dpbpy (3), and bpm (5)}, and their reference complexes [RuCl(L)(terpy)]+ {L = phen (2), dpbpy (4), and dpphen (6)} were prepared and characterized by electrospray ionization mass spectrometry, UV-vis spectroscopy, and cyclic voltammograms (CV). Abbreviations of the ligands (Ls) are phen = 1,10-phenanthroline, dpbpy = 4,4?-diphenyl-2,2?-bipyridine, bpm = 2,2?-bipyrimidine, dpphen = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2?-bipyridine, and terpy = 2,2?:6?,2?-terpyridine. The X-ray structures of the two complexes 2 and 3 were newly obtained. The metal-to-ligand charge transfer (MLCT) bands in the visible region for 1, 3, and 5 in acetonitrile were blue shifted relative to those of the reference complexes [RuCl(L)(terpy)]+. CV for all the [Ru(CH3CN)(L)(terpy)]2+ complexes showed the first oxidation wave at around 0.95 V, being more positive than those of [RuCl(L)(terpy)]+. The time-dependent-density-functional-theory approach (TDDFT) was used to interpret the absorption spectra of 1 and 2. Good agreement between computed and experimental absorption spectra was obtained. The DFT approach also revealed the orbital interactions between Ru(phen)(terpy) and CH3CN or Cl-. It is demonstrated that the HOMO-LUMO energy gap of the acetonitrile ligand is larger than that of the Cl- one.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Quality Control of: Ruthenium(III) chloride hydrate. In my other articles, you can also check out more blogs about 20759-14-2

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI