15746-57-3, Name is Cis-Dichlorobis(2,2′-bipyridine)ruthenium(II), molecular formula is C20H16Cl2N4Ru, belongs to ruthenium-catalysts compound, is a common compound. In a patnet, once mentioned the new application about 15746-57-3, category: ruthenium-catalysts
Effects of excited state – Excited state configurational mixing on emission bandshape variations in ruthenium – Bipyridine complexes
The 77 K emission spectra of 21 [Ru(L)4bpy]m+ complexes for which the Ru/bpy metal-to-ligand-charge-transfer ( 3MLCT) excited-state energies vary from 12 500 to 18 500 cm -1 have vibronic contributions to their bandshapes that implicate excited-state distortions in low frequency (lf, hnulf < 1000 cm-1), largely metal-ligand vibrational modes which most likely result from configurational mixing between the 3MLCT and a higher energy metal centered (3LF) excited state. The amplitudes of the lf vibronic contributions are often comparable to, or sometimes greater than those of medium frequency (mf, hnumf > 1000 cm-1), largely bipyridine (bpy) vibrational modes, and for the [Ru(bpy)3] 2+ and [Ru(NH3)4bpy]2+ complexes they are consistent with previously reported resonance-Raman (rR) parameters. However, far smaller lf vibronic amplitudes in the rR parameters have been reported for [Os(bpy)3]2+, and this leads to a group frequency approach for interpreting the 77 K emission bandshapes of [Ru(L) 4bpy]m+ complexes with the vibronic contributions from mf vibrational modes referenced to the [Os(bpy)3]2+ rR parameters (OB3 model) and the envelope of lf vibronic components represented by a “progression” in an “equivalent” single vibrational mode (lf1 model). The lf1 model is referenced to rR parameters reported for [Ru(NH3)4bpy]2+. The observation of lf vibronic components indicates that the MLCT excited-state potential energy surfaces of Ru-bpy complexes are distorted by LF/MLCT excited-state/excited-state configurational mixing, but the emission spectra only probe the region near the 3MLCT potential energy minimum, and the mixing can lead to larger distortions elsewhere with potential photochemical implications: (a) such distortions may labilize the 3MLCT excited state; and (b) the lf vibrational modes may contribute to a temperature dependent pathway for nonradiative relaxation.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.category: ruthenium-catalysts. In my other articles, you can also check out more blogs about 15746-57-3
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI