Discovery of 37366-09-9

If you are hungry for even more, make sure to check my other article about 37366-09-9. Application of 37366-09-9

Application of 37366-09-9, Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. 37366-09-9, C12H12Cl4Ru2. A document type is Article, introducing its new discovery.

Catalysts for the asymmetric transfer hydrogenation of various ketones from [3-[(2S)-2-[(diphenylphosphanyl)oxy]-3-phenoxypropyl]-1-methyl-1H-imidazol-3-ium chloride] and [Ru(eta6-arene)(mu-Cl)Cl]2, Ir(eta5-C5Me5)(mu-Cl)Cl]2 or [Rh(mu-Cl)(cod)]2

The combination of [3-[(2S)-2-[(diphenylphosphanyl)oxy]-3-phenoxypropyl]-1-methyl-1H-imidazol-3-ium chloride] with [Ru(eta6-arene)(mu-Cl)Cl]2, Ir(eta5-C5Me5)(mu-Cl)Cl]2 or [Rh(mu-Cl)(cod)]2, in the presence of KOH/isoPrOH, has been found to generate catalysts that are capable of enantioselectively reducing alkyl, aryl ketones to the corresponding (R)-alcohols. Under optimized conditions, when the catalysts were applied to the asymmetric transfer hydrogenation, we obtained the secondary alcohol products in high conversions and enantioselectivities using only 0.5 mol% catalyst loading. In addition, [3-[(2S)-2-{[(chloro(?4-1,5-cyclooctadiene)rhodium)diphenyl phosphanyl] oxy}-3-phenoxypropyl]-1-methyl-1H-imidazol-3-ium chloride], (6) complex is much more active than the other analogous complexes in the transfer hydrogenation. Catalyst 6 acts as excellent catalysts, giving the corresponding (R)-1-phenyl ethanol in 99% conversion in 30 min (TOF ? 396 h?1) and in high enantioselectivity (92% ee).

If you are hungry for even more, make sure to check my other article about 37366-09-9. Application of 37366-09-9

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI