The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.10049-08-8, Name is Ruthenium(III) chloride, molecular formula is Cl3Ru. In a Article£¬once mentioned of 10049-08-8, Recommanded Product: 10049-08-8
Kinetic and mechanistic study of Br(V) oxidation of glycolic acid catalysed by aquochlororuthenium(III) complex at different acid strengths: Evaluation of individual rate constants and thermodynamic parameters
Oxidation of glycolic acid (GA) by bromate in the presence of perchloric acid at moderate and low concentrations is catalysed by aquochlororuthenium(III) complex. The reactions at moderate and low acid strengths exhibit different kinetic behaviour on account of existence of catalyst in different forms. In moderate acid solutions, the mechanism proposed involves the oxidation of Ru(III) to Ru(V) by oxidant which in turn forms a reversible complex with substrate in the ratio of 1:2. The decomposition of the complex thus formed, into products is the slow rate determining step. At lower [acid], the mechanism is visualised as the formation of reversible complex between GA and catalyst preceding the formation of an intermediate with the oxidant in a slow-step. The decomposition of the intermediate into products is assumed to be the fast step. The rate constants involved in all individual steps of the reactions are evaluated along with their activation parameters and discussed.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Recommanded Product: 10049-08-8, you can also check out more blogs about10049-08-8
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI