The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

Solid [Ru(PPh3)3Cl2] (200 mg, 0.21 mmol) was added to a methanol solution (30 ml) of H2L1 (153 mg, 0.42 mmol) and NaOAc(35 mg, 0.42 mmol). The mixture was boiled under reflux for 1 h and then cooled to room temperature. The red solid deposited was collected by filtration and dried in air. This material was dissolved in minimum amount of dichloromethane and transferred to a silica gel column packed with dichloromethane. The first yellow band moved with the eluent 1 : 4 mixture of dichloromethane/ n-hexane was discarded. The following red band containing the complex 1 was eluted with a 2 : 3 mixture of dichloromethane/ n-hexane. The red solution thus obtained was evaporated to dryness and the complex was collected as a dark red solid. The yield was 220 mg (78 %).

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Nagaraju, Koppanathi; Pal, Samudranil; Inorganica Chimica Acta; vol. 413; (2014); p. 102 – 108;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

246047-72-3, As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

246047-72-3, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.246047-72-3, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium An updated downstream synthesis route of 246047-72-3 as follows.

After a 50 mL two-necked flask was purged with argon, the ligand 3cw (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate after filtration to obtain sand. The crude product was obtained by silica gel column chromatography and then washed with methanol or pentane-DCM to obtain a green solid product 4cw, yield: 85%.

246047-72-3, As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : Dichloro(cycloocta-1,5-diene)ruthenium(II)

50982-12-2 Dichloro(cycloocta-1,5-diene)ruthenium(II) 11000435, aruthenium-catalysts compound, is more and more widely used in various fields.

50982-12-2, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc.Dichloro(cycloocta-1,5-diene)ruthenium(II), below Introduce a new synthetic route.

Complex C-l was also prepared using [RuCl2(COD)]n as a precursor. Thus, a mixture of [RuCl2(COD)]n (309 mg, 1.103 mmol), PPh3 (289 mg, 1.103 mmol) and ligand Id (248 mg, 1.103 mmol) was stirred in toluene (10 ml) at 115C for 24 h in a KONTES pressure tube. After cooling, the resulting brick colored precipitate was filtered on a filter frit, washed with diethyl ether (3 x 10 ml) and vacuum dried to afford 494 mg of a light pink crude material (Found C, 53.43; H, 5.26; N, 4.08%). Recrystallization from hot THF, filtering and layering with diethyl ether, afforded burgundy crystals (261 mg, 32% yield as a THF solvate). Based on NMR analysis, these crystals represent a THF solvate of complex C-l. The crystals were found to lose solvent based on elemental analysis. Elem. Anal: Calc’d for C3oH35Cl2N2PRuS (658.63): C, 54.71; H, 5.36; N, 4.25%; Found C, 54.37; H, 5.66; N, 3.87%.

50982-12-2 Dichloro(cycloocta-1,5-diene)ruthenium(II) 11000435, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on Ruthenium(III) chloride hydrate

With the rapid development of chemical substances, we look forward to future research findings about Ruthenium(III) chloride hydrate

Ruthenium(III) chloride hydrate, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 20759-14-2

(4) Preparation of trans-3′-oxospiro[cyclohexane-1,1′(3’H)-isobenzofuran]-4-carboxylic acid A mixture of 4-hydroxymethylspiro[cyclohexane-1,1′(3’H)-isobenzofuran]-3’one (190 mg), chloroform (2.0 mL), acetonitrile (2.0 mL) and sodium phosphate buffer (pH6.5, 2.0 mL) was cooled to 0 C., to which sodium periodate (612 mg) and ruthenium(III) chloride n-hydrate (10 mg) were added and the mixture was stirred for 30 minutes. The reaction mixture was stirred together with 1N hydrochloric acid (2.0 mL) for 30 minutes and partitioned between water (50 mL) and ethyl acetate (50 mL). The organic layer was washed with saturated saline solution, dried over anhydrous Na2SO4 and then concentrated. The residue was purified by column chromatography on silica gel (chloroform/methanol=100/1) to give the subject compound (98.6 mg).

With the rapid development of chemical substances, we look forward to future research findings about Ruthenium(III) chloride hydrate

Reference£º
Patent; Banyu Pharmaceutical Co., Ltd.; US6803372; (2004); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : Dichlorotris(triphenylphosphino)ruthenium (II)

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: The amine (4-CH3-pip, 4-CH2Ph-pip or 4-CH2(OH)-pip; 0.34 mmol) was added to a solution of [RuCl2(PPh3)3] (0.26 mmol; 0.25 g) in acetone (40 mL). The resulting dark green solution was stirred for 2 h at RT. A green precipitate was formed, filtered, washed with methanol and ethyl ether, and then dried in vacuum. Complex 1 (R = H): 75% yield. Analytical data for RuCl2P2NC42H43 are 63.40C, 5.45H, and 1.76% N; found 63.59C, 5.47H, and 1.88% N. FTIR in CsI: 322 cm-1 for nu(Ru-Cl); 3228 cm-1 for nu(N-H). 31P{1H} NMR in CDCl3: 62.7 ppm (s). Complex 2 (R = Ph): 58% yield. Analytical data for RuCl2P2NC48H47 are 66.13C, 5.43H, and 1.61% N; found 66.41C, 5.37H, and 1.72% N. FTIR in CsI: 320 cm-1 for nu(Ru-Cl); 3257 cm-1 for nu(N-H). 31P{1H} NMR in CDCl3: 62.7 ppm (s).

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Chaves, Henrique K.; Ferraz, Camila P.; Carvalho Jr., Valdemiro P.; Lima-Neto, Benedito S.; Journal of Molecular Catalysis A: Chemical; vol. 385; (2014); p. 46 – 53;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.246047-72-3, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium An updated downstream synthesis route of 246047-72-3 as follows., 246047-72-3

Grubbs second generation catalyst (100 mg, 0.117 mmol), 2-[(2,6-dimethylphenylimino)methyl]phenol (pKa: 8.85+/- 0.30) (0.117 mmol), silver (I) carbonate (16.27 mg, 0.058 mmol), and THF (2 ml) were reacted at room temperature during 2 h. The solvent was evaporated and crude reaction product purified on a chromatography column to give an orange-brown complex. Yield 22%.

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Telene SAS; EP2151445; (2010); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

246047-72-3, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc.(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, below Introduce a new synthetic route.

To a 40 mL scintillation vial equipped with a magnetic stir bar was added C848 (0.500 g, 0.589 mmol), ^-toluenesulfonyl chloride (0.056 g, 0.30 mmol), tetrahydrothiophene 1- oxide (0.307 g, 2.94 mmol), and dichloromethane (4 mL). The reaction was stirred at ambient temperature for one hour then diluted with diethyl ether (25 mL). The precipitate was isolated by filtration, washed with diethyl ether (2 x 10 mL) followed by hexanes (1 x 15 mL) then dried in vacuum to afford C673 (0.248 g, 62.6% yield). [000131] 1H MR (400 MHz, CDCh) delta 16.12 (s, 1H), 7.82 (d, J = 7.7 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.23 (t, J = 7.7 Hz, 2H), 7.11 (br s, 2H), 6.93 (s, 1H), 6.29 (s, 1H), 4.11 – 3.94 (m, 3H), 3.86 – 3.76 (m, 1H), 2.72 (s, 3H), 2.69 (s, 3H), 2.64 (s, 3H), 2.62 – 2.45 (m, 3H), 2.35 (s, 3H), 2.27 – 2.17 (m, 1H), 2.15 (s, 3H), 2.07 (s, 3H), 2.05 – 1.91 (m, 2H), 1.84 – 1.68 (m, 2H)., 246047-72-3

The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MATERIA, INC.; JOHNS, Adam, M.; (112 pag.)WO2018/38928; (2018); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about Dichlorotris(triphenylphosphino)ruthenium (II)

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

15529-49-4, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 15529-49-4, name is Dichlorotris(triphenylphosphino)ruthenium (II) This compound has unique chemical properties. The synthetic route is as follows.

Under argon dichlorotris(triphenylphosphine)ruthenium(II) (1.52 g, 1.58 mmol) is added to a solution of N-(2-(diphenylphosphino)benzylidene)-2-(ethylthio)ethanamine (0.60 g, 1.58 mmol) in toluene (13 ml). After stirring for 19 h at 110 C. the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension DCM (20 ml) is added. After stirring for 15 min the suspension is filtered and dried under vacuo. Complex 6 is obtained as a red solid (0.88 g, 69%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.80 (d, J=8.84, 1H), 7.56-6.81 (m, 29H), 6.35 (m, 2H), 4.60 (m, 1H), 4.20 (m, 1H), 3.03 (m, 2H), 2.29 (m, 1H), 0.92 (t, J=7.33, 3H). 31P-NMR (500 MHz, CDCl3): 45.68 (d, J=30.23, 1P), 29.60 (d, J=30.23, 1P). MS (ESI): 811.10 (40%, M+), 776.12 (100%, [M-Cl]+). Anal. calcd. for C41H39Cl2NP2RuS: C, 60.66%; H, 4.84%; N, 1.73%. Found: C, 60.85%; H, 4.90%; N, 1.64%

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; (17 pag.)US2016/326199; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II)

With the synthetic route has been constantly updated, we look forward to future research findings about Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II),belong ruthenium-catalysts compound

Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II), cas is 918870-76-5, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,918870-76-5

Example 103 Synthesis of Ru complex 6h The Ru complex (Zhan catalyst 2b, l.Ommol) and a new ligand 5h (1.5mmol) were dissolved in 20 mL of anhydrous DCM and reacted directly to form the desired Ru complex 6h in the preaence of CuCl (3.0mmol) in a 100 mL of three-neck flask filled with inert gas (Ar). The reaction mixture was stirred for 0.5 hr at room temperature. After complete, the reaction solution was filtered and purified by flask column. 378mg of yellow-green solid product 6h was obtained, yield: 52%. Ru complex 6h is confirmed by 1HNMR (400 MHz, CDC13): delta 16.52 (s, 1H, Ru=CH), 8.43 (s, 1H, N=CH), 8.10 (s, 1H), 7.46-7.22 (m, 2H), 7.73-6.96 (m, 8H), 4.19 (s, 4H, NCH2CH2N), 3.95 (s, 3H), 3.87 (s, 3H), 2.49 (s, 12H), 2.48 (s, 6H).

With the synthetic route has been constantly updated, we look forward to future research findings about Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II),belong ruthenium-catalysts compound

Reference£º
Patent; ZANNAN SCITECH CO., LTD.; ZHAN, James Zheng-Yun; WO2011/79439; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of Dichlorotris(triphenylphosphino)ruthenium (II)

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.15529-49-4, name is Dichlorotris(triphenylphosphino)ruthenium (II) An updated downstream synthesis route of 15529-49-4 as follows.

General procedure: Diphosphine ligand (2.0 mmol) was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of RuCl2(PPh3)3 (1.0 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether.

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Al-Noaimi, Mousa; Warad, Ismail; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Haddad, Salim F.; Hadda, Taibi B.; Polyhedron; vol. 62; (2013); p. 110 – 119;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI