Final Thoughts on Chemistry for Dichloro(benzene)ruthenium(II) dimer

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. 37366-09-9, In my other articles, you can also check out more blogs about 37366-09-9

37366-09-9. Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer

Continuous-flow asymmetric hydrogenation of the beta-keto ester methyl propionylacetate in ionic liquid-supercritical carbon dioxide biphasic systems

A continuous-flow process for the asymmetric hydrogenation of methyl propionylacetate as a prototypical beta-keto ester in a biphasic system of ionic liquid and supercritical carbon dioxide (scCO2) is presented. An established ruthenium/2,2?-bis(diphenylphosphino)-1,1?-binaphthyl (BINAP) catalyst was immobilised in an imidazolium-based ionic liquid while scCO2 was used as mobile phase transporting reactants in and products out of the reactor. The use of acidic additives led to significantly higher reaction rates and enhanced catalyst stability albeit at slightly reduced enantioselectivity. High single pass conversions (>90%) and good enantioselectivity (80-82% ee) were achieved in the first 80h. The initial catalyst activity was retained to 91% after 100h and to 69% after 150h time-on-stream, whereas the enantioselectivity remained practically constant during the entire process. A total turnover number of ?21,000 and an averaged space-time yield (STYav) of 149g L-1 h -1 were reached in a long-term experiment. No ruthenium and phosphorus contaminants could be detected via inductively coupled plasma optical emission spectrometry (ICP-OES) in the product stream and almost quantitative retention by the analysis of the stationary phase was confirmed. A comparison between batch-wise and continuous-flow operation on the basis of these data is provided. Copyright

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. 37366-09-9, In my other articles, you can also check out more blogs about 37366-09-9

Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI