Share a compound : (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,246047-72-3

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of Dichlorotris(triphenylphosphino)ruthenium (II)

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 15529-49-4, name is Dichlorotris(triphenylphosphino)ruthenium (II) This compound has unique chemical properties. The synthetic route is as follows. 15529-49-4

General procedure: To a round-bottomed flask with a stir bar was placed with [Ru(PPh3)3Cl2] (868 mg, 2.0 mmol) under the nitrogen. Pre-dried THF(10 mL) was added and the resulting mixture was stirred at room temperature. Then salen-enH2 (536 mg, 2.0 mmol) and a little excess of Et3N (252 mg, 2.5 mmol) in THF (5 mL) were added. The reaction mixture was stirred at room temperature overnight. After removal of solvents, CH2Cl2 (15 mL) was added and the solution was filtered through cilite. The filtrate was concentrated and the residue was washed with Et2O (5mL 2) and hexane (5 mL 2) to give the desired product. Recrystallization from CH2Cl2/Et2O (1:2) afforded green block-shaped crystals of [RuCl(PPh3)(salen)] (3) suitable for X-ray diffraction in three days. Yield: 1011 mg, 76% (based on Ru).

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Tang, Li-Hua; Wu, Fule; Lin, Hui; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 477; (2018); p. 212 – 218;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

246047-72-3, In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.246047-72-3, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium An updated downstream synthesis route of 246047-72-3 as follows.

After a 50 mL two-necked flask was purged with argon, a ligand 7b (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate to produce sand. The crude product was obtained by silica gel column chromatography and then washed with methanol or pentane-DCM to obtain a green solid product 8b in a yield of 79%., 246047-72-3

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on Dichloro(cycloocta-1,5-diene)ruthenium(II)

50982-12-2 is used more and more widely, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials.50982-12-2, name is Dichloro(cycloocta-1,5-diene)ruthenium(II) A new synthetic method of this compound is introduced below., 50982-12-2

50982-12-2, Toluene (5 ml) was added to a mixture of (Ad2PCH2CH2)2NH (250 mg, 0.37 mmol) and [RuCl2(cod)]n (104 mg, 0.37 mmol) under argon and the mixture refluxed for 20 hours. The mixture was cooled to room temperature and4-methoxyphenyl isonitrile (49 mg, 0.37 mmol) added and the mixture refluxed for 12 hours under argon. It was cooled to room temperature and ether (40 ml) added. The pale brown solid was filtered, washed with ether and dried under vacuum. Yield = 0.18 g.

50982-12-2 is used more and more widely, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Reference£º
Patent; HADEED, Gerald, S.; ABDUR-RASHID, Kamaluddin; (61 pag.)WO2018/193401; (2018); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride

301224-40-8, The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 301224-40-8, name is (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride This compound has unique chemical properties. The synthetic route is as follows.

General procedure: In a glove box, a flask was charged with Ru complex 4 or 5 and Ag salt 3. Anhydrous degassed CH2Cl2 was then added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off through a Celite layer and washed with anhydrous (2mL). The solution was diluted with anhydrous hexane (10mL) and remaining precipitated Ag salt was again filtered off. Evaporation of the solvents on a rotary vacuum evaporator (40C, 1h, 25kPa) and finally at oil pump vacuum (25C, 1h, 1kPa) gave the products 1 or 2.

301224-40-8, The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lipovska, Pavlina; Rathouska, Lucie; ?im?nek, Ond?ej; Ho?ek, Jan; Kola?ikova, Viola; Ryba?kova, Marketa; Cva?ka, Josef; Svoboda, Martin; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 191; (2016); p. 14 – 22;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

246047-72-3, A 50 mL two-necked flask was purged with argon and then the ligand 7q (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After completion of the reaction, silica gel was added to the filtrate after filtration, and the crude product was obtained by silica gel column chromatography, and then washed with methanol or pentane-DCM to obtain a green solid product 8q. Yield: 59%.

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Research on new synthetic routes about (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride

With the synthetic route has been constantly updated, we look forward to future research findings about (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride,belong ruthenium-catalysts compound

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride it is a common compound, a new synthetic route is introduced below., 301224-40-8

Potassium 2,4,6-triphenylthiophenolate 2d (53 mg, 0.14 mmol) was transferred to a 25 mL Schlenk flask, followed by addition of 5 mL of THF under argon, and the mixture was stirred vigorously and heated at 55 C. Hoveyda-Grubbs second generation catalyst (82 mg, 0.13 mmol) dissolved in toluene (1 mL) was then added, and the mixture stirred at 55 C. for 2.5 h. The solvents were then removed in vacuo, and the product was redissolved in 6 mL Et2O. Following filtration, 3 mL of hexane was added, and the mixture cooled to -40 C., causing precipitation of impurities. After allowing solids to settle, the solution was filtrated, and the solvents removed in vacuo to yield the crude 4d complex as a green powder (50.7 mg, 42%). 1H NMR (400.13 MHz, C6D6): delta=14.50 (s, 1H), 7.80 (d, J=6.4 Hz, 2H), 7.47 (t, J=6.7 Hz, 2H), 7.42-7.34 (m, 2H), 7.31-7.21 (m, 3H), 7.11 (t, J=7.2 Hz, 3H), 7.08-7.00 (m, 3H), 6.99-6.90 (m, 3H), 6.87 (s, 2H), 6.79-6.60 (m, 4H), 6.15 (d, J=8.2 Hz, 2H), 4.15 (sept, J=6.1 Hz, 1H), 3.38-3.20 (m, 4H), 2.47 (s, 6H), 2.38 (s, 6H), 2.29 (s, 6H), 1.15 (d, J=6.1 Hz, 3H), 0.59 (d, J=6.1 Hz, 3H). (0132) 13C NMR (100.6 MHz, CD2Cl2): delta=276.55, 210.42, 153.68, 146.72, 138.75, 138.16, 131.23, 129.58, 129.12, 128.97, 128.75, 128.31, 127.87, 127.77, 127.50, 127.23, 127.01, 125.83, 122.65, 121.72, 113.38, 76, 15, 53, 87, 51, 98, 21.54, 21.25, 20.83, 19.92, 19.04. MS (DART), m/z: 928.27512 (M+H)+; calc. for C55H56OClN2SRu: 928.27671.

With the synthetic route has been constantly updated, we look forward to future research findings about (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride,belong ruthenium-catalysts compound

Reference£º
Patent; Bergen Teknologioverforing AS; Jensen, Vidar R.; Occhipinti, Giovanni; Hansen, Frederick Rosberg; US8716488; (2014); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

With the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.246047-72-3, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium An updated downstream synthesis route of 246047-72-3 as follows., 246047-72-3

A suspension of 218 mg (0.26 mmol) of [RuCl2(PCy3) (ImH2Mes)(phenylmethy- lene)], 26 mg (0.26 mmol) copper chloride and 49 mg (0.29 mmol) 2-methyl-8-vinyl- quinoline in 17 ml methylene chloride was stirred at 300C for 90 min. The reaction mixture was evaporated to dryness and the isolated crude product purified by silica gel chromatography (hexane / ethyl acetat 7:3) and finally digested in 15 ml hexane at room temperature for 30 min to yield 157 mg (96%) of the title compound as green crystals. MS: 632.9 (M+). 1H-NMR (300 MHz, C6D6): 2.15 (s, 3H); 2.29 (s, 6H); 2.64 (s, 12H); 3.49 (s, 4H); 6.30 (d, J=8.4Hz, IH); 6.80 (t, J=7.3Hz, IH); 6.98 (s, 4H); 7.10 (d, J=8.4Hz, IH); 7.40 (d, J=8.1Hz, IH); 7.52 (d, J=7.0Hz, IH), 17.15-17.32 (br, IH). Anal, calcd. for C32H35N3Cl2Ru: C, 60.66; H, 5.57; N, 6.63; Cl, 11.19. Found: C, 60.33; H, 5.58; N, 6.27; Cl, 10.90.

With the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2008/644; (2008); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The origin of a common compound about Dichloro(cycloocta-1,5-diene)ruthenium(II)

With the complex challenges of chemical substances, we look forward to future research findings about 50982-12-2,belong ruthenium-catalysts compound

50982-12-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.50982-12-2, Dichloro(cycloocta-1,5-diene)ruthenium(II) it is a common compound, a new synthetic route is introduced below.

A mixture of [RuCl2(COD)]n (309 mg, 1.103 mmol), PCy3 (309 mg, 1.103 mmol) and la (294 mg, 1.103 mmol) was stirred in toluene (10 ml) at 115 C for 48 h in a KONTES pressure tube. After cooling down, the brick colored precipitate was collected on a filter frit, washed with Et20 (3 x 10 ml) and vacuum dried to afford 642 mg of the crude material. To the crude material was added CH2C12 (~ 32 ml) and the obtained mixture was brought to reflux and filtered using a Whatman syringe filter (PTFE membrane, pore size 0.45 muiotaeta). Layering the obtained red-brown solution with Et20 (125 ml) afforded 327 mg (41%) of the product as a pink-brown powder after 5 days. Elem. Anal.: Calcd for C32H55Cl2N2OPRuS (718.81): C, 53.47; H, 7.71; N, 3.90%. Found: C, 53.11; H, 8.00; N, 3.86%. 31P{1H} (162 MHz, CD2C12, r.t.): delta 24.0 (s). 1H NMR (400 MHz, CD2C12, r.t.): delta 0.09 (brs, 1H), 0.92 (brs, 2H), 1.04-1.63 (m, 15H), 1.63-2.05 (m, 9H), 2.10-2.45 (brs, 3H), 2.45-2.70 (brs, 1H), 2.83-3.28 (overlapped, 7H), 3.31-3.56 (overlapped, 6H), 3.56-3.90 (overlapped, 4H), 3.98 (t, J~ 8 Hz, 1H), 5.57 (brs, NH, 1H), 7.31 (t, J~ 7 Hz, 2H), 7.38 (t, J~ 6 Hz, 1H), 8.15 (d, J~ 7 Hz, 2H). 13C{1H} selected for the coordinated NNS ligand (100.5 MHz, CD2C12, r.t.): delta 46.6 (s, 1C), 46.8 (s, 1C), 48.3 (s, 1C), 53.9 (s, 1C, overlapped with CD2C12 peak), 54.8 (s, 1C), 60.0 (s, 1C), 60.7 (s, 1C), 61.7 (s, 1C), 128.1 (s, 2Cmeta, Ph), 129.3 (s, Cpam, Ph), 134.9 (s, 2Cortho, Ph), 138.0 (s, Cipso, Ph).

With the complex challenges of chemical substances, we look forward to future research findings about 50982-12-2,belong ruthenium-catalysts compound

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of Dichlorotris(triphenylphosphino)ruthenium (II)

With the complex challenges of chemical substances, we look forward to future research findings about 15529-49-4,belong ruthenium-catalysts compound

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 15529-49-4, name is Dichlorotris(triphenylphosphino)ruthenium (II) This compound has unique chemical properties. The synthetic route is as follows. 15529-49-4

To a solution of N,O-LH-Cl (930?mg, 4.0?mmol) in THF (20?mL) was added [Ru(PPh3)3Cl2] (868?mg, 2.0?mmol), which was then stirred under N2 for 15?min. Triethylamine (Et3N) (404?mg, 4.0?mmol) was introduced, and the reaction mixture was stirred overnight at room temperature, during which the color of solution changed from brown to dark green. After removal of solvents in vacuo, the residue was extracted with CH2Cl2 (5?mL?*?2) and the solution was filtered. The filtrate was layered with Et2O (20?mL) at room temperature, and dark green block-shaped crystals of cis-[RuCl(PPh3)(kappa2-N,O-L-Cl)2] (1) were harvested in three days. Yield: 1187?mg, 69% (based on Ru). mueff?=?1.98?muB. IR (KBr disc, cm-1): 1592 (nuC=N), 1314 (nuC-O), 1437, 1092 and 698 (nuPPh3). MS (FAB): m/z 860 [M+], 825 [M+-Cl], 598 [M+-PPh3], 563 [Ru(kappa2-N,O-L-Cl)2]+. Anal. Calc. for C44H33N2O2Cl3PRu(%): C, 61.44; H, 3.87; N, 3.26. Found: C, 61.47; H, 3.83; N, 3.24.

With the complex challenges of chemical substances, we look forward to future research findings about 15529-49-4,belong ruthenium-catalysts compound

Reference£º
Article; Tang, Li-Hua; Wu, Fule; Lin, Hui; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 477; (2018); p. 212 – 218;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI