Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The reaction of 2,6-diacetylpyridine mono(4-methoxyphenylthiosemicarbazone) ligand, HL1, prepared as described in reference 35, with RuCl2(PPh3)3 in 1:1M ratios was carried out, in presence of Et3N, in degassed toluene for 3hat room temperature under nitrogen atmosphere. The resulting brown solution was filtered and evaporated to dryness. The solid residue was washed with pentane and dried in vacuo. Further purification by recrystallization from DMSO led to single crystals which were studied by X-ray diffraction techniques.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Article; Matesanz, Ana I.; Hernandez, Carolina; Perles, Josefina; Souza, Pilar; Journal of Organometallic Chemistry; vol. 804; (2016); p. 13 – 17;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI