Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4
15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.
Example 8: Dichloro[(N-(2-(diphenylphosphino)benzyl)-2-(ethylthio)ethanamine)(triphenylphosphine)]ruthenium(ll) 8 (8) Under argon 2-(methylthio)benzaldehyde (0.33 g, 2.18 mmol) is added to a solution of 2- (di-phenylphosphino)ethanamine (0.50 g, 2.18 mmol) in methanol (6 ml). After stirring for 42 h at 75 C the reaction mixture is cooled to room temperature and evaporated under vacuo. SNP-ligand 2-(diphenylphosphino)-N-(2-(methylthio)benzylidene)ethanamine is obtained as a light-brown solid (0.66 g, 84%). Analytical data: 1H-NMR (500 MHz, CDCl3): 8.74 (s, 1H), 7.79 (dd, 7=1.58, 7.88, 1H), 7.52-7.48 (m, 4H), 7.39- 5 7.32 (m, 8H), 7.21 (m, 1H), 3.80 (m, 2H), 2.53 (m, 2H), 2.48 (s, 3H). 13C-NMR (500 MHz, CDCl3): 159.37, 138.34, 134.24, 132.88, 132.74, 130.78, 130.66, 128.59, 128.49, 128.44, 128.25, 127.28, 125.50, 58.58, 29.99, 16.90. 31P-NMR (500 MHz, CDCl3): -19.04 (s, 1P). GC/MS: 363 (2%, M+), 348 (2%, [M-15]+), 320 (100%, [M-43]+), 288 (10%), 214 (12%), 183 (39%), 121 (20%), 108 (42%). Under argon dichlorotris(triphenylphosphine)ruthenium(ll) (0.53 g, 0.55 mmol) is added to a solution of 2-(diphenylphosphino)-N-(2-(methylthio)benzylidene)ethanamine (0.20 g, 0.55 mmol) in toluene (15 ml). After stirring for 20 h at 110 C the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension hexane (20 ml) is added. After stirring for 15 min the suspension is filtered and 15 washed with hexane (4 ml). The red filter cake is dried under vacuo for 19 h and then suspended in diethyl ether (6 ml). The suspension is filtered, washed with diethyl ether (4 x 4 ml) and the filter cake is dried under vacuo. Complex 8 is obtained as a light-red solid (0.29 g, 67%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.78 (d, 7=8.84, 1H), 8.33 (m, 1H), 7.70 (m, 3H), 7.54-7.06 (m, 20 25H), 4.59 (m, 1H), 4.53 (m, 1H), 2.55 (m, 2H), 1.83 (d, 7=2.53, 3H). 31P-NMR (500 MHz, CDCl3): 40.62 (d, 7=32.27, IP), 36.72 (d, 7=32.37, IP). MS (ESI): 797.18 (62%, M+), 762.12 (100%, [M-Cl]+).
Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4
Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; WO2015/110515; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI