Application of 1,3-Bisbenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ruthenium(III) chloride, 10049-08-8

10049-08-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ruthenium(III) chloride, cas is 10049-08-8,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Step 1 To a solution of 2-(4,4-dimethyl-chroman-7-yl)-heptan-1-ol (0.27 g, 0.98 mmole, from Example 1, step 6) in a mixture of 2 mL of carbon tetrachloride, 2 mL acetonitrile and 3 mL water, containing 3-5 mg of ruthenium chloride, was added 0.85 g of sodium periodate. The mixture was stirred at room temperature for 2 hours, diluted with 10 mL of water, and pH was adjusted to 2 with 10percent hydrochloric acid. The mixture was extracted with three 10 mL portions of dichloromethane. The organic phase was dried over MgSO4, filtered and concentrated in vacuo to give a dark oil. The product was purified by flash chromatography (SiO2, gradient from 0 to 20percent ethyl acetate in hexanes) to yield 0.16 g of 2-(4,4-dimethyl-chroman-7-yl)-heptanoic acid as a pale yellow oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ruthenium(III) chloride, 10049-08-8

Reference£º
Patent; Syntex (U.S.A.) LLC; US2003/158178; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI