Some tips on 246047-72-3

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, and cas is 246047-72-3, its synthesis route is as follows.

After a 50 mL two-necked flask was purged with argon, 3 g (10 mmol) of ligand, CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate to prepare a sand product. The crude product was obtained by silica gel column chromatography, and then washed with methanol or pentane-DCM to obtain a green solid product 4cs in a yield of 82%.

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, and cas is 246047-72-3, its synthesis route is as follows.

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 246047-72-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

246047-72-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

After a 50 mL two-necked flask was replaced by argon, the ligand 3 cu (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate to prepare a sand product. The crude product was obtained by silica gel column chromatography and then washed with methanol or pentane-DCM to give 4cu green solid product in a yield of 65%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II), and cas is 15529-49-4, its synthesis route is as follows.

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline,2 mmol of benzyl alcohol, 1 mmol of bisdiphenylphosphinemethane, 1 mmol of RuCl2 (PPh3) 3,2 mmol of triethylamine, 20 ml of toluene, heating at 110 C. for 12 h under a nitrogen atmosphere, cooling,The resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 1 in a yield of 89%.

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on Dichlorotris(triphenylphosphino)ruthenium (II)

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II), and cas is 15529-49-4, its synthesis route is as follows.

General procedure: A methanol (10ml) solution containing the appropriate N-S pro-ligand and triethylamine was refluxed under argon for 15min and then the complex [RuCl2(PPh3)3] was added. The resulting brown suspension was refluxed for 3h, to afford a yellow suspension. After cooling, the yellow solid was collected by filtration, washed with methanol (3¡Á5ml), and dried under reduced pressure. 2.6.2 [Ru(mcbtz)2(PPh3)2] (2) Hmcbtz (0.035 g – 2.0 * 10-4 mol); NEt3 (30 mul – 2.0 * 10-4 mol), and [RuCl2(PPh3)3] (0.095 g – 9.9 * 10-5 mol). Yield: 65 mg – 68.5%. 31P{1H} NMR (81 MHz, CDCl3) 52.2 ppm (s). 1H NMR (200 MHz, CDCl3), delta/ppm 8.0-6.5 (m, 30H Ph – PPh3 and 8H Ph – mcbtz-). Anal.exp. (calc. for C50H38N2P2RuS4) C-62.3 (62.7); H, 4.0 (4.0); N, 2.8 (2.9); S, 12.8(13.4).

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Appelt, Patricia; Fagundes, Francisco D.; Facchin, Gianella; Gabriela Kramer; Back, Davi F.; Cunha, Mario A.A.; Sandrino, Bianca; Wohnrath, Karen; De Araujo, Marcio P.; Inorganica Chimica Acta; vol. 436; (2015); p. 152 – 158;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 246047-72-3, its synthesis route is as follows.

After a 50 mL two-necked flask was purged with argon, the ligand 7k (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were successively added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After completion of the reaction, silica gel was added to the filtrate after filtration, and the crude product was obtained by silica gel column chromatography, and then washed with methanol or pentane-DCM to obtain a green solid product 8k in a yield of 77%.

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1,3-Bisbenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ruthenium(III) chloride, 10049-08-8

10049-08-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ruthenium(III) chloride, cas is 10049-08-8,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Step 1 To a solution of 2-(4,4-dimethyl-chroman-7-yl)-heptan-1-ol (0.27 g, 0.98 mmole, from Example 1, step 6) in a mixture of 2 mL of carbon tetrachloride, 2 mL acetonitrile and 3 mL water, containing 3-5 mg of ruthenium chloride, was added 0.85 g of sodium periodate. The mixture was stirred at room temperature for 2 hours, diluted with 10 mL of water, and pH was adjusted to 2 with 10percent hydrochloric acid. The mixture was extracted with three 10 mL portions of dichloromethane. The organic phase was dried over MgSO4, filtered and concentrated in vacuo to give a dark oil. The product was purified by flash chromatography (SiO2, gradient from 0 to 20percent ethyl acetate in hexanes) to yield 0.16 g of 2-(4,4-dimethyl-chroman-7-yl)-heptanoic acid as a pale yellow oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ruthenium(III) chloride, 10049-08-8

Reference£º
Patent; Syntex (U.S.A.) LLC; US2003/158178; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline, 1.5 mmol of p-bromobenzyl alcohol, 1 mmol of bis Dicyclohexylphosphine propane,mmol RuCl2 (PPh3) 3,1 mmol potassium hydroxide, 20 ml dioxane, the temperature was 110 C, heated for 20h under a nitrogen atmosphere, cooledHowever, filtration and recrystallization of the resulting solid from a mixed solvent of CH 2 Cl 2 and petroleum ether gave product 6 in a yield of 87%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 172222-30-9

172222-30-9, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,172222-30-9 ,Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, other downstream synthetic routes, hurry up and to see

Name is Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 172222-30-9, its synthesis route is as follows.

A suspension of 3.07 g (3.73 mmol) of [RuCl2(PCy3)2(phenylmethylene)] (commercial available from Sigma-Aldrich Inc., St. Louis, USA), 380 mg (3.84 mmol) copper chloride and 1.06 g (4.10 mmol) 4-chloro-2-trifluoromethyl-8-vinyl-quinoline in 135 ml methylene chloride was stirred at 300C for 90 min. The reaction mixture was evaporated to dryness and the isolated crude product purified by silica gel chromatography (hexane / ethyl acetat 2:1) and finally digested in 50 ml pentane at room temperature for 30 min to yield 429 mg (17percent) of the title compound as dark green crystals. MS: 697.0 (M+). 31P-NMR (121 MHz, C6D6): 54.2 ppm. 1H-NMR (300 MHz, C6D6): 1.18-2.35 (m, 30H); 2.60 (q, J=12.0Hz, 3H); 6.82 (t, J=6.0Hz, IH); 7.01 (d, J=3.0Hz, IH); 7.55 (d, J= 6.0Hz, IH); 7.89 (d, J=6.0Hz, IH); 17.80-17.90 (m, IH).

172222-30-9, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,172222-30-9 ,Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2008/644; (2008); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 50982-12-2

The chemical industry reduces the impact on the environment during synthesis,50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),I believe this compound will play a more active role in future production and life.

50982-12-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

b) A brown suspension of RuCl2(1,5-cyclooctadiene) (560 mg; 2 mmol), 0.6 ml of 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and 1.18 g of tricyclohexylphosphine in 60 ml of isopropanol was stirred at 80 C. for 2 hours. 60 ml of toluene was added to the resulting brick-red suspension and the mixture was stirred at 80 C. for a further 90 minutes and cooled to -10 C. After addition of 0.55 ml of trimethylsilylacetylene, 10 ml of 2 M HCl solution in diethyl ether were added and the mixture was subsequently stirred for 5 minutes. The mixture was warmed while stirring to 0 C. and stirred for 45 minutes. After evaporation at 0 C. in a high vacuum, the residue was stirred with cold MeOH. The resulting violet powder was washed with cold methanol and dried under reduced pressure. Yield 1.40 g (92%).

The chemical industry reduces the impact on the environment during synthesis,50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Evonik Degussa GmbH; US2011/40099; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI