The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

Step 4: (PPh^2CI2Ru(3-2-methylphenyl-5-methylphenyl-inden-1 -ylidene) (1 D): (PPh3)3RuCl2 (1 eq., 0.575 g, 0.6 mmol) and 1 ,1 -bis-2-methylphenyl-prop-2-yn-1-ol (compound C, 1.5 eq., 0.213 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.52 g (Yield: 95 %). The product was characterized by NMR spectra H and 3 P. H NMR (300 MHz, CDCI3, TMS): delta 7.56 (dd, 1 1 H), 7.37 (t, 6 H), 7.21 -7.31 (m, 13 H), 7.09 (tetra, 3 H), 6.95 (t, 3 H), 6.47 (t, 1 H), 6.14 (s, 1 H), 2.20 (s, 3 H), 1 .66 (s, 3 H). 3 P NMR (121.49 MHz, CDCI3): delta 29.33.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; (69 pag.)WO2016/242; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : 50982-12-2

50982-12-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,50982-12-2 ,Dichloro(cycloocta-1,5-diene)ruthenium(II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II), and cas is 50982-12-2, its synthesis route is as follows.

Separately, 200 ml of well dried tetrahydrofuran was fed to a 500 ml flask whose inside had been substituted by argon, and 5 g of dichloro(cyclooctadienyl)ruthenium was injected into the flask and well mixed with tetrahydrofuran to obtain a suspension. This suspension was cooled to -78 C. in a stream of argon, and 14 ml of a tetrahydrofuran solution of the above synthesized fluorocyclopentadienyl sodium was added dropwise to the above suspension over 1 hour. The obtained reaction mixture was further stirred at -78 C. for 3 hours and returned to room temperature under agitation over 12 hours. After the reaction mixture was let pass through a neutral alumina column in a stream of argon to be purified and concentrated, it was purified again by a neutral alumina column to obtain 0.4 g of bis(fluorocyclopentadienyl)ruthenium (yield rate of 8.4%).

50982-12-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,50982-12-2 ,Dichloro(cycloocta-1,5-diene)ruthenium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Patent; JSR Corporation; US2006/240190; (2006); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 15529-49-4

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.

An anhydrous Et2NH (10 mL) solution of dicyclohexylphosphinomethylpyridine-borane complex (280 mg, 0.923 mmol) was heated at 65C for 48 h under Ar. The solution was cooled to room temperature and Et2NH was removed in vacuo (ca. 10 mmHg, room temperature). To the residue was added sequentially dichlorotris(triphenylphosphino)ruthenium (II) (442.5 mg, 0.46 mmol) and an anhydrous toluene (10 mL). The resulting mixture was heated at 110C for 5 h under Ar, and was cooled to room temperature. Then to the mixture was added an anhydrous hexane (20 mL) to afford the yellow suspension. The mixture of the suspension was stirred at room temperature for 12 h and filtered through a filtration paper. The obtained yellowish orange solid was dried in vacuo (ca. 0.1 mmHg, room temperature) and dissolved in CH2Cl2. This solution was purified by column chromatography on silica gel (EtOAc/hexane =1/4) to afford RUPCY (1a) as orange powder (237 mg, 68%).

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Miura, Takashi; Held, Ingmar E.; Oishi, Shunsuke; Naruto, Masayuki; Saito, Susumu; Tetrahedron Letters; vol. 54; 21; (2013); p. 2674 – 2678;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 246047-72-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

246047-72-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Complex 1 (2.0 grams) was dissolved in toluene (10 mL), and 3-bromopyridine (1.50 grams, 4 mol equivalents) was added. The reaction flask was purged with argon and the reaction mixture was stirred for approximately 12 hours at about 20 C. to about 25 C. during which time a color change from dark purple to light green was observed. The reaction mixture was transferred into 75 mL of cold (about 0 C.) pentane, and a light green solid precipitated. The precipitate was filtered, washed with 4¡Á20 mL of cold pentane, and dried under vacuum to afford (IMesH2)(C5H4BrN)2(Cl)2RuCHPh 6 as a light green powder (1.8 grams, 86% yield).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

Reference£º
Patent; California Institute of Technology; Cymetech, LLP; US6759537; (2004); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1-(i-propyl)-1-phenylprop-2-yn-1-ol (compound 18A, 1.5 eq., 0.144 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.48 g (Yield: 93%). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 629.55.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II), As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II), and cas is 15529-49-4, its synthesis route is as follows.

A Schlenk flask was loaded with [Ru(PPh3)3(Cl)2] (2.0270 g,2.114 mmol) and bis(3-aminopropyl)phenylphosphine (1) (0.4816 g,2.147 mmol), to which was added 17 ml of anhydrous toluene to generate a yellow suspension. The mixture was stirred in an oil bath at 110 C, for two hours. The yellow suspension was then stirred for 16 h at room temperature, after which time the solid was isolated via canula filtration and washed with 100 ml of anhydrous diethyl ether 3 times. The solid was dried under vacuum for 72 h. Isolated mass 1.20 g, 86% yield. NMR data – 1H NMR (CDCl3, delta): 7.71 (m with appearance of t,6 H) 7.43 (m with appearnce of t, 2 H), 7.14-6.94 (m, 10 H), 6.88 (mwith appearance of t, 2 H) 4.25, (br, 2H, NH), 3.39 (br, 2H, NH and CH),3.08 (br, 1H, CH), 2.23-1.81 (m, 10H, 9CH and NH), 0.68 (br, 1H, CH). 13C{1H} NMR (CDCl3, delta): 138.7 (d, i-C of PPh), 137.0 (d, i-C of PPh3),134.0 (d, o-C of PPh3), 131.2 (d, o-C of PPh), 128.4 (s, p-C of PPh3),128.2 (s, p-C of PPh), 127.7 (d, m-C of PPh), 127.5 (d, m-C of PPh3),42.3, 40.5, 33.3 (d, 1JPC=26.9 Hz), 27.9 (d, 1JPC=27.8 Hz), 26.1,25.4. 31P{1H} NMR (CDCl3, delta): 48.8 (d, 2JPP=34 Hz), 32.65 (d,2JPP=34 Hz). Elemental analysis calculated (%) for C30H36Cl2N2P2Ru:C 53.93, H 5.51, N 4.25; found: C 53.72, H 5.51, N 4.52 Product is soluble in dichloromethane and chloroform, but insoluble in methanol,ethanol, isopropanol and acetonitrile. The product is air sensitive in solution, turning green on exposure to air. A sample of the solid exposed to air for 2 h and returned to the glove box was analysed by NMR; no new unassigned signals were observed in either the 1H or 31P NMR spectra. Single crystals of [Ru(1)PPh3(Cl)2] were grown by layering hexane onto a DCM solution of the complex to enable slow diffusion of the solvents

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Braden, Drew J.; Cariou, Renan; Shabaker, John W.; Taylor, Russell A.; Applied Catalysis A: General; vol. 570; (2019); p. 367 – 375;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 50982-12-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichloro(cycloocta-1,5-diene)ruthenium(II), 50982-12-2

50982-12-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Na2[7,10-nido-C2B10H12] was dissolved in degassed THF (45 mL) giving a purple solution. Excess Na was removed from the reduced carborane solution to give a colourless solution which was then transferred into a Schlenk tube containing [RuCl2(COD)]x (0.780 g, 2.78 mmol) and a large excess of naphthalene. The resulting brown mixture was heated at reflux for 90 min then allowed to cool to room temperature. The brown mixture was filtered through a short silica column eluting with DCM to afford a brown solution, removal of solvent from which yielded a brown solid. This was further purified by column chromatography (1:2 DCM:40-60 petroleum ether), giving a yellow band, followed by preparative TLC (2:1 DCM:40-60 petroleum ether, Rf 0.38) yielding solid. C12H20B10Ru requires C 38.59, H 5.40. Found: C 39.48, H 4.87%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichloro(cycloocta-1,5-diene)ruthenium(II), 50982-12-2

Reference£º
Article; Scott, Greig; Ellis, David; Rosair, Georgina M.; Welch, Alan J.; Journal of Organometallic Chemistry; vol. 721-722; (2012); p. 78 – 84;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 15529-49-4

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

RuCl2(PPh3)3 (1 g, 1 .04 mmol) and the ligand of formula (IVg) (obtained from Example 1 ) (231 .4 mg, 1 .1 mmol) were placed in a 25 mL Schlenk tube under argon atmosphere, and dissolved in dry diglyme (2 mL). The reaction mixture was heated to 165C for 2 h, allowed to cool down to room temperature and stored at -18C to precipitate further overnight. Cold Et2O (2 mL) was added while cooling with a dry ice//so-propa- nol bath. The precipitate was filtrated by cannula, and washed with Et2O (5 times 2 mL). The orange powder was dried in vacuo, affording 530 mg (79%) of Ru(6-MeNN- SEt)(PP i3)Cl2 as an orange powder. An equilibrium of two conformations of Ru(6- MeNNSEt)(PPh3)Cl2 are existent in solution, delivering a doubled set of signals in NMR. For 1H-NMR only data of the major conformation is given due to overlapping signals. 1H-NMR (300 MHz, CD2CI2): delta 7.67-7.16 (m, 17H, CHarom), 7.01 (d, 1 H, J = 7.8, CHarom), 5.65 (m, 2H), 4.47 (m, 1 H), 3.5 (m, 1 H), 3.34 (m, 1 H), 3.22 (d, 1 H, J = 1 1 .1 ), 2.98 (m, 1 H), 2.59 (m, 1 H), 1 .53 (m, 2H), 0.87 (t, 3H, J = 7.5) ppm. 31P-NMR (122 MHz, CD2CI2): delta 48.8, 45.8 ppm. HRMS (ESI+): calculated for C29H32CI2N2PRUS (M+H): 644.0518; found 644.0518 (M+H), 667.0412 (M+Na)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Patent; DSM IP ASSETS B.V.; BELLER, Matthias; BONRATH, Werner; DE VRIES, Johannes, Gerardus; FAN, Yuting; HUeBNER, Sandra; LEFORT, Laurent; MEDLOCK, Jonathan, Alan; PUYLAERT, Pim; VAN HECK, Richard; (65 pag.)WO2017/194662; (2017); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

246047-72-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

To a Schlenk flask charged with Grubbs? catalyst 2 (0.42g, 0.50mmol) and CuCl (0.05g, 0.50mmol), compound 9 (0.6mmol) in 10mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40min at 40C. After being cooled to room temperature, the reaction mixture was filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2: ethyl acetate=2:1 or pentanes: ethyl acetate=3:2 or1:1) to give the desired product as a green crystalline solid. Yield: 65.7%. Anal. Calc. for C34H43Cl2N3O2Ru: C, 58.53; H, 6.21; N, 6.02. Found: C, 58.45; H, 6.21; N, 5.95%. 1H NMR (400MHz, CDCl3) delta (ppm): 1.41 (d, J=6.3Hz, 3H), 2.38 (s, 3H), 2.40 (bs, 6H), 2.52 (bs, 12H), 2.77 (s, 3H), 2.79 (s, 3H), 4.10 (s, 4H), 5.23 (q, J=6.6, 1H), 6.54 (d, J=8.3Hz, 1H), 6.75 (s, 4H), 7.08 (s, 4H), 7.28 (d, J=8.4Hz, 1H), 16.37 (s, 1H). 13C NMR (100MHz, CDCl3) delta: 16.7, 21.4, 27.3, 36.2, 37.0, 51.9, 62.2, 73.4, 112.3, 129.4, 129.3, 129.6, 133.2, 138.3, 145.9, 149.4, 171.4, 210.5, 302.1ppm. IR (KBr) v: 3033, 2912, 2845, 2735, 1946, 1628, 1475, 1445, 1415, 1233, 1217, 1129, 1103, 853, 571cm-1.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

Reference£º
Article; Liu, Guiyan; Shao, Mingbo; Zhang, Huizhu; Wang, Jianhui; Polyhedron; vol. 76; (2014); p. 51 – 54;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 50982-12-2

50982-12-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,50982-12-2 ,Dichloro(cycloocta-1,5-diene)ruthenium(II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II), and cas is 50982-12-2, its synthesis route is as follows.

A mixture of [RuCl2(COD)]n (309 mg, 1.103 mmol), PCy3 (309 mg, 1.103 mmol) and Id (248 mg, 1.103 mmol) was stirred in toluene (10 ml) at 115 C for 48 h (in a KONTES pressure tube). After cooling, the brick colored precipitate was filtered on a filter frit, washed with Et20 (3 x 10 ml) and partially vacuum dried on the filter (vacuum pump). The residue was extracted from the filter frit with dichloromethane (6 >< 3 ml). The obtained solution was layered with Et20 (100 ml). Red-brown crystals were collected in few days (521 mg, 70%> yield). Elem. Anal: Calcd for (0461) C30H53Cl2N2PRuS (676.77): C, 53.24; H, 7.89; N, 4.14%. Found: C, 53.10; H, 7.95; N, 4.05%. 31P{1H} (162 MHz, CDC13, r.t.): delta 27.0 (s). 1H NMR (400 MHz, CDC13, r.t.): delta 0.78-3.90 (overlapped m, 47H), 5.57 (brs, 1H, NH), 7.22-7.53 (m, 3Eta), 8.10-8.30 (m, 2Eta). 13C{1H} (100.5 MHz, CDC13, r.t., selected without PCy3 carbon atoms): delta 46.7 (s, 1C), 46.8 (s, 1C), 48.5 (s, 1C), 52.3 (s, 1C), 54.2 (s, 1C), 67.2 (s, 1C), 128.2 (s, 2Cmeta, Ph), 129.4 (s, Cpara, Ph), 134.9 (s, 2Cortho, Ph), 137.8 (s, Cipso, Ph).

50982-12-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,50982-12-2 ,Dichloro(cycloocta-1,5-diene)ruthenium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI