New learning discoveries about 15529-49-4

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Under argon dichlorotris(triphenylphosphine)ruthenium(II) (0.53 g, 0.55 mmol) is added to a solution of 2-(diphenylphosphino)-N-(2-(methylthio)benzylidene)ethanamine (0.20 g, 0.55 mmol) in toluene (15 ml). After stirring for 20 h at 110 C. the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension hexane (20 ml) is added. After stirring for 15 min the suspension is filtered and washed with hexane (4 ml). The red filter cake is dried under vacuo for 19 h and then suspended in diethyl ether (6 ml). The suspension is filtered, washed with diethyl ether (4¡Á4 ml) and the filter cake is dried under vacuo. Complex 8 is obtained as a light-red solid (0.29 g, 67%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.78 (d, J=8.84, 1H), 8.33 (m, 1H), 7.70 (m, 3H), 7.54-7.06 (m, 25H), 4.59 (m, 1H), 4.53 (m, 1H), 2.55 (m, 2H), 1.83 (d, J=2.53, 3H). 31P-NMR (500 MHz, CDCl3): 40.62 (d, J=32.27, 1P), 36.72 (d, J=32.37, 1P). MS (ESI): 797.18 (62%, M+), 762.12 (100%, [M-Cl]+).

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; (17 pag.)US2016/326199; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI