Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO96,mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

2-Methyl-acrylic acid 3-trimethoxysilane propyl ester (87 mg, 0.35 mmol) in dry THF was treated with triethylamine (0.20 mL) and the mixture was stirred for 30 min at ambient temperature under air. [RuCl2(PPh3)3] (335 mg, 0.35 mmol) was added and the reaction mixture was stirred at reflux for 2 h, during which there was a color residue was washed with diethyl ether and hexane. Recrystallization from CH2Cl2/hexane afforded dark green crystals of 1 in a week. Yield: 128 mg, 47% (based on Ru). IR (KBr disc, cm-1): nu(C=C) 1623 (s), nu(OCO) 1504 (s) and 1472 (s). MS (FAB): m/z = 781 [M]+, 746 [M-Cl]+, 711 [M-2Cl]+. mueff = 1.93 muB. Anal. for C40H35O2Cl2P2Ru: calcd. C 61.46, H 4.51%; found C 61.41, H 4.48%.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

Reference£º
Article; Gu, Jiling; Shi, Li-Miao; Ma, Xiu-Fang; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 466; (2017); p. 382 – 388;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI