Simple exploration of 246047-72-3

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

After a 50 mL two-necked flask was purged with argon, 3 g (10 mmol) of ligand, CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate to prepare a sand product. The crude product was obtained by silica gel column chromatography, and then washed with methanol or pentane-DCM to obtain a green solid product 4cs in a yield of 82%.

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 246047-72-3

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

Example 5 Synthesis of the Complex 4 According to the Invention [0081] The commercially available complex G (200 mg, 0.24 mmol) was placed in a flask, to which methylene chloride was added (6 ml). This was followed by adding the compound of the formula: (78 mg, 0.47 mmol) and tricyclohexylphosphine (132 mg, 0.47 mmol). The resulting solution was stirred at a temperature of 40 C. for 1 hour. The reaction mixture was introduced at the top of a chromatographic column packed with silica gel (eluent: ethyl acetate/cyclohexane, 0 to 10 vol. %). After evaporating the solvents, the complex 4 was obtained as a brown solid (104 mg, 50% yield). [0082] 1H NMR (500 MHz, CD2Cl2) delta ppm: 16.42 (s, 1H), 8.00 (dd, J=9.3, 2.7 Hz, 1H), 7.53 (d, J=2.7 Hz, 1H), 7.12 (s, 1H), 7.06 (s, 2H), 6.69 (d, J=9.3 Hz, 1H), 6.22 (s, 1H), 4.07-4.03 (m, 1H), 3.88-3.77 (m, 2H), 3.73-3.67 (m, 1H), 2.64 (s, 3H), 2.56 (s, 3H), 2.51 (s, 3H), 2.39 (s, 3H), 2.27 (s, 3H), 1.64-1.50 (m, 13H), 1.46 (m, 3H), 1.12-0.75 (m, 20H). 13C NMR: (125 MHz, CD2Cl2) delta ppm: 282.23 (d), 220.27, 219.73, 184.63 (d), 145.82, 139.23 (d), 139.08, 138.89, 137.46, 136.76, 136.69, 134.24, 134.00, 130.55, 130.36, 129.41 (d), 125.78, 117.59, 115.27, 52.14 (d), 51.63 (d), 34.52, 32.77, 32.64, 29.40, 28.91, 28.00 (m), 26.90 (d), 22.73, 21.34, 21.01, 19.41, 18.63, 18.53, 17.10, 14.21.

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Skowerski, Krzysztof; Bieniek, Michal; US2015/158896; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Into a solution of L1 (0.037 g, 0.09 mmol) in methanol (25 mL) the complex [RuCl2(PPh3)3] (0.07 g, 0.07 mmol) was added. The resulting solution was refluxed for 5 h under visible light (125 W halogen lamp), then cooled at room temperature and concentrated to 2 mL. The precipitate was obtained after the addition of 50 mL of diethyl ether/n-pentane (1:1) to the concentrated solution. The product was filtered, washed with diethyl ether/n-pentane (1:1) (2 * 25 mL) and dried in the vacuum. A solution of 1 in methanol was kept at room temperature for slow evaporation under daylight. Single crystals (light green) suitable for X-ray structure determination were obtained after one week. Yield: 0.49 g, 93%. Elemental analyses for RuC42H36Cl2N7P (841.72): calcd C 59.89, H 4.28, N 11.64%; found C 60.38, H 4.51, N 11.26. MS, (FAB, m/z): 806 [M+, RuC42H36ClN7P], 56 (100%) [NC3H6], 508 [Ru C24H21N7]+, 544 [RuC24H21N7Cl]+, 770 [RuC42H36N7P]+. 1H NMR (CD3OD): delta 3.98, 4.54 (AB system, 2JHH = 15.0 Hz, N-CH2-bzimtrans-bzim, 2H+2H), 4.40 (s, N-CH2-bzimtransPPh3, 2H), 7.05-9.64 (m, aromatic, 27H). 13C{1H} NMR (CD3OD): delta 64.10 (s, N-CH2-bzimtransPPh3), 63.50 (s, N-CH2-bzimtrans-Cl), 110.6-123.4 (m, bzim-ring), 127.2-133.8 (aromatics). 31P{1H} NMR (CD3OD): delta 48.26 (s, PPh3). UV-Vis (H2O): nm [epsilon (dm3 mol-1 cm-1)]: 382 (1660). Cyclic voltammetry (CH3CN, 22 C): Eox = 0.87 mV; Ered = 0.81 mV; E1/2 = 0.84 mV.

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Guadalupe Hernandez; Thangarasu, Pandiyan; Hoepfl, Herbert; Cruz, Julian; Serrano-Ruiz, Manuel; Romerosa, Antonio; Inorganica Chimica Acta; vol. 431; (2015); p. 258 – 265;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 246047-72-3

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

After a 50 mL two-necked flask was purged with argon, ligand 5c (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate to prepare a sand product. The crude product was obtained by silica gel column chromatography and then washed with methanol or pentane-DCM to obtain a yellow-green solid product 6c in a yield of 96%.

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 15529-49-4

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

RuCl2(PPh3)3 (1 g, 1 .04 mmol) and the ligand of formula (IVg) (obtained from Example 1 ) (231 .4 mg, 1 .1 mmol) were placed in a 25 mL Schlenk tube under argon atmosphere, and dissolved in dry diglyme (2 mL). The reaction mixture was heated to 165C for 2 h, allowed to cool down to room temperature and stored at -18C to precipitate further overnight. Cold Et2O (2 mL) was added while cooling with a dry ice//so-propa- nol bath. The precipitate was filtrated by cannula, and washed with Et2O (5 times 2 mL). The orange powder was dried in vacuo, affording 530 mg (79%) of Ru(6-MeNN- SEt)(PP i3)Cl2 as an orange powder. An equilibrium of two conformations of Ru(6- MeNNSEt)(PPh3)Cl2 are existent in solution, delivering a doubled set of signals in NMR. For1H-NMR only data of the major conformation is given due to overlapping signals.1H-NMR (300 MHz, CD2CI2): delta 7.67-7.16 (m, 17H, CHarom), 7.01 (d, 1 H, J = 7.8, CHarom), 5.65 (m, 2H), 4.47 (m, 1 H), 3.5 (m, 1 H), 3.34 (m, 1 H), 3.22 (d, 1 H, J = 1 1 .1 ), 2.98 (m, 1 H), 2.59 (m, 1 H), 1 .53 (m, 2H), 0.87 (t, 3H, J = 7.5) ppm.31P-NMR (122 MHz, CD2CI2): delta 48.8, 45.8 ppm.HRMS (ESI+): calculated for C29H32CI2N2PRUS (M+H): 644.0518; found 644.0518 (M+H), 667.0412 (M+Na)

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Patent; DSM IP ASSETS B.V.; BELLER, Matthias; BONRATH, Werner; DE VRIES, Johannes, Gerardus; FAN, Yuting; HUeBNER, Sandra; LEFORT, Laurent; MEDLOCK, Jonathan, Alan; PUYLAERT, Pim; VAN HECK, Richard; (49 pag.)WO2017/194663; (2017); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 246047-72-3

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid., 246047-72-3

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: To a round-bottomed flask with a stir bar was placed with [Ru(PPh3)3Cl2] (868 mg, 2.0 mmol) under the nitrogen. Pre-dried THF(10 mL) was added and the resulting mixture was stirred at room temperature. Then salen-enH2 (536 mg, 2.0 mmol) and a little excess of Et3N (252 mg, 2.5 mmol) in THF (5 mL) were added. The reaction mixture was stirred at room temperature overnight. After removal of solvents, CH2Cl2 (15 mL) was added and the solution was filtered through cilite. The filtrate was concentrated and the residue was washed with Et2O (5mL 2) and hexane (5 mL 2) to give the desired product. Recrystallization from CH2Cl2/Et2O (1:2) afforded green block-shaped crystals of [RuCl(PPh3)(salen)] (3) suitable for X-ray diffraction in three days. Yield: 1011 mg, 76% (based on Ru).

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Tang, Li-Hua; Wu, Fule; Lin, Hui; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 477; (2018); p. 212 – 218;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1-(4-fluorophenyl)-1-phenylprop-2-yn-1-ol (compound 16A, 1.5 eq., 0.20 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.49 g (Yield: 90%). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 628.26.

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 246047-72-3

The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

246047-72-3, General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 246047-72-3

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

A suspension of 1.00 g (1.19 mmol) of [RuCl2(PCy3)(ImH2Mes)(phenylmethylene)] (commercially available from Sigma- Aldrich Inc., St. Louis, USA), 0.15 g (1.47 mmol) of copper chloride and 0.30 g (1.47 mmol) of 2-[((?,Z)-2-propenyl)-phenoxy]-propionarnide as a 3.5:1 mixture of E/Z-isomers in 75 ml of dichloromethane was stirred for 30 min at 400C. The reaction mixture was evaporated to dryness at 40C/10 mbar. The crude title product was dissolved in 100 ml of ethyl acetate and the formed suspension filtered. The filtrate was evaporated to dryness at 40 C/10 mbar. The crude title product was purified by repeated digestion with pentane / THF to yield 0.41 g (53%) of the title compound as a green solid.MS: 655.1 (M+). Anal, calcd. for C3IH37Cl2N3O2Ru: C, 56.79; H, 5.69; N, 6.41; Cl, 10.81. Found: C, 56.23; H, 5.59; N, 6.16; Cl, 10.84.Crystals of the title compound suitable for X-ray crystal structure analysis were grown by vapor diffusion of pentane into a solution of 10 mg of [RuCl2(=CH(o-OCH(Me)CONH2) Ph)(ImH2MeS)] in 0.5 ml of tetrahydrofuran at room temperature.Fig. 3 shows a labeled view of the complex of formula E.

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2009/124853; (2009); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI