Some tips on 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound 6 (604.4 mg, 1.0 mmol) and degassed morpholine (20 mL) were placed in a 100-mL Young-Schlenk container substituted with argon gas. Thereafter, the Young-Schlenk container was placed in an oil bath, and heated to 120 C. while stirring the components in the Young-Schlenk container, thereby causing a reaction. The progress of the reaction was confirmed by TLC, and the heating was stopped after two hours. Subsequently, the morpholine in the reaction mixture restored to room temperature (25 C.) was removed after collection with a liquid nitrogen trap under reduced pressure (0.1 to 2 mmHg). At this time, the reaction mixture was sufficiently stirred, and the Young-Schlenk container was immersed in water at room temperature (25 C.) to prevent cooling of the Young-Schlenk container by the heat of vaporization. (0217) After sufficiently removing the morpholine, dichlorotris(triphenylphosphino)ruthenium (II) (958.8 mg, 1.0 mmol) and dehydrated toluene (20 mL) were added while introducing argon gas into the container, and the mixture was heated to 110 C. using an oil bath, thereby causing a reaction. The heating was stopped after three hours, and the reaction mixture was restored to room temperature (25 C.). (0218) Subsequently, dehydrated hexane (40 mL) was added to the reaction mixture in an argon gas atmosphere. Thereafter, the whole mixture, including the hexane layer and the toluene layer, in the Young-Schlenk container was stirred and completely mixed. After leaving the mixture unattended for 15 minutes, the generated purple substance was filtered out in an argon atmosphere while being washed with dehydrated diethylether, thereby obtaining a crude product. (0219) Subsequently, the resulting crude product was subjected to column chromatography (developing solvent: chloroform/ethyl acetate=5/1) in which silica gels were accumulated to about 10 cm, thereby removing a compound with high polarity. The effluent was collected to a flask and the collection was continued until the color of the purple liquid was slightly diluted. After this operation, the solution collected in the recovery flask was rapidly concentrated by an evaporator, thereby obtaining 435.1 mg (0.58 mmol, 58%) of substantially pure Compound 2c (RUPCY2) as a purple substance. (0220) The spectral data of Compound 2c (RUPCY2) is shown below. (0221) 1H NMR (500 MHz, CDCl3): delta 7.86 (d, 2H, J=7.4 Hz, C10H6N2), 7.66 (t, 2H, J=7.5 Hz, C10H6N2), 7.56 (d, 2H, J=7.5 Hz, C10H6N2), 3.87 (d, 4H, J=8.1 Hz, PCH2), 2.41 (br, 4H, C6H11), 2.18 (d, 4H, J=12.1 Hz, C6H11), 2.05 (d, 4H, J=10.9 Hz, C6H11), 1.54-1.81 (m, 20H, C6H11), 1.20-1.34 (m, 20H, C6H11). 13C NMR (150 MHz, CDCl3): delta 163.3, 158.3, 134.1, 122.0, 119.9, 40.5 (d, 1JPC=13.0 Hz), 36.3, 30.3, 29.4, 27.7, 27.5, 26.4. 31P{1H} NMR (241 MHz, CDCl3): delta 54.1. HRMS (ESI, (M-Cl)+) Calcd for C36H54ClN2P2Ru+: 713.2494. Found m/z=713.2476. (0222) FIG. 1 shows a result of X-ray single crystal structural analysis (Oak Ridge Thermal Ellipsoid Plot) of Compound 2c.

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; National University Corporation Nagoya University; Saito, Susumu; Noyori, Ryoji; Miura, Takashi; Naruto, Masayuki; Iida, Kazuki; Takada, Yuki; Toda, Katsuaki; Nimura, Sota; Agrawal, Santosh; Lee, Sunkook; (42 pag.)US9463451; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 3-Methyl-1,2,3,4-tetrahydroisoquinoline

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

A common heterocyclic compound, the ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II),cas is 15529-49-4, mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum. Complex 2a: [RuCl2(PPh3)3] complex (0.30g, 0.31mmol), Schiff base 1a (0.070g, 0.37mmol), NaOH (0.18g, 0.45mmol), and methanol (20mL) afforded 0.25g (80%) of the title complex as a yellow solid: anal. calculated for C49H48ClNOP2Ru was 68.01C, 5.59H and 1.62% N; found: 68.34C, 5.55H and 1.60% N. UV-Vis: lambdamax(n) (nm), epsilonmax(n) [M-1cm-1]: lambdamax(1) (252), epsilonmax(1) [10020], lambdamax(2) (370), epsilonmax(2) [625], lambdamax(3) (422), epsilonmax(3) [240]; IR (KBr): nux (cm-1): nuC=N (1618), nuC-O (1355); 1H NMR: (CDCl3, 400MHz): 7.30-7.70 (m, 12H: metha-PPh3 and 1H: CH=N), 7.30-7.70 (m, 6H, para-PPh3), 7.21-7.30 (m, 12H, ortho-PPh3), 6.63-6.68 (m, 1H, salicyl-ring), 6.4-6.5 (dd, 3JH,H=1.6Hz, dd, 3JH,H=1.2Hz, 1H, salicyl-ring), 6.04-6.10 (m, 1H, salicyl-ring), 5.85-5.80 (m, 1H, salicyl-ring), 3.85-3.92 (m, 1H, CHPentyl), 1.60-1.80 (m, 3H, CH2Pentyl), 1.29-1.38 (m, 4H, CH2Pentyl), 1.07-1.15 (m, 1H, CH2Pentyl),13C NMR (CDCl3) delta 166.12, 160.83, 135.16, 135, 134.84, 134.26, 134.21, 134.16, 132.12, 132.04, 131.93, 131.91, 129, 128.53, 128.44, 127.62, 127.59, 127.55, 123.36, 121.99, 111.80, 75.92, 32.39, 23.43; 31P{1H} NMR (CDCl3: delta, ppm): 43.15 (s). EPR: no signal was observed.

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

A common heterocyclic compound, the ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,cas is 246047-72-3, mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

A suspension of 1.00 g (1.18 mmol) of [RuCl2(PCy3)(ImH2Mes)(phenylmethylene)](commercially available from Sigma- Aldrich Inc., St. Louis, USA), 0.13 g (1.30 mmol) of copper chloride and 0.38 g (1.30 mmol) oflambda/-phenyl-2-[((E,Z)-2-propenyl)-phenoxy]- propionamide as a 4:1 mixture ofE/Z-isomers in 75 ml of dichloromethane was stirred for 30 min at 400C. The reaction mixture was evaporated to dryness at 400C/ 10 mbar. The residue was stirred in 75 ml of ethyl acetate for 30 min at room temperature. The dark green suspension was filtered and the filtrate was evaporated to dryness at 40C/10 mbar. The crude title product was purified by silica gel chromatography (cyclohexane/ethyl acetate 4:1) to yield 0.75 g (88% yield) of the title compound as a green powder.MS: 731.1 (M+). Anal, calcd. for C37H4ICl2N3O2Ru ? V3 C6Hi2: C, 61.65; H, 5.97; N, 5.53; Cl, 9.33. Found: C, 61.83; H, 6.71; N, 5.35; Cl, 8.93.

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2009/124853; (2009); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 246047-72-3

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 18 (10.5 g, 22.4 mmol) in THF (120 mL) was added TBAF (1.0 mol/L in THF, 90 mL, 90 mmol) at 20 C, and the mixture was stirred for 5 h. Then, the mixture was concentrated under reduced pressure, and the residue was purified by recrystallization (PhH + H2O) to give 19 (7.50 g, 21.2 mmol, 95%) as a colorless needle. 19: mp 217e219 C; [a]D24 39.7 (c 0.0350, CHCl3); IR (KBr) n 3484, 3054, 3026, 2891, 1436, 1380, 1265, 1103, 1031, 861, 828, 801, 744, 678, 549, 476 cm1; 1H NMR (400 MHz, CDCl3) d 2.36e2.45 (1H, m), 2.66 (1H, ddd, J 3.6, 8.3, 15.9 Hz), 2.80 (1H, s), 3.34 (1H, t, J 8.5 Hz), 3.39 (1H, ddd, J 4.0, 9.7, 19.4 Hz), 3.53 (1H, dt, J 5.2, 9.7 Hz), 3.65 (1H, t, J 9.3 Hz), 3.77 (1H, t, J 10.5 Hz), 3.89 (1H, t, J 8.8 Hz), 4.07 (1H, brqd, J 2.9, 15.3 Hz), 4.35e4.40 (2H, m), 5.73(1H, s), 5.82e5.88 (1H, m), 5.92e5.98 (1H, m), 7.46e7.50 (2H, m), 7.62 (1H, d, J 8.5 Hz), 7.82e7.88 (3H, m), 7.99 (1H, s); 13C NMR (100 MHz, CDCl3) d 34.3 (CH2), 68.5 (CH2), 68.9 (CH2), 69.9 (CH), 73.6 (CH), 76.4 (CH), 80.9 (CH), 87.8 (CH), 101.9 (CH), 123.8 (CH), 125.8 (CH), 126.1 (CH), 126.4 (CH), 127.3 (CH), 127.7 (CH), 128.2 (CH),128.4 (CH), 131.7 (CH), 132.9 (C), 133.7 (C), 134.4 (C); EI-HRMS (m/z) calcd for C21H22O5 [M]: 354.1467, found: 354.1464.

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Sato, Takuto; Nogoshi, Keisuke; Goto, Akiyoshi; Domon, Daisuke; Kawamura, Natsumi; Nomura, Yoshitaka; Sato, Daisuke; Tanaka, Hideki; Murai, Akio; Katoono, Ryo; Kawai, Hidetoshi; Suzuki, Takanori; Fujiwara, Kenshu; Kondo, Yoshihiko; Akiba, Uichi; Tetrahedron; vol. 73; 6; (2017); p. 703 – 726;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of Methyl 1,4-Benzodioxan-6-carboxylate

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

A common heterocyclic compound, the ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,cas is 246047-72-3, mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

A common heterocyclic compound, the ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II),cas is 15529-49-4, mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline, 1.5 mmol of p-bromobenzyl alcohol, 1 mmol of bis Dicyclohexylphosphine propane,mmol RuCl2 (PPh3) 3,1 mmol potassium hydroxide, 20 ml dioxane, the temperature was 110 C, heated for 20h under a nitrogen atmosphere, cooledHowever, filtration and recrystallization of the resulting solid from a mixed solvent of CH 2 Cl 2 and petroleum ether gave product 6 in a yield of 87%.

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

The ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,cas is 246047-72-3, mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

The catalyst precursor 620g and alkenyl ligands340g was added to a 10L reactor was added dichloromethane solvent 5L, cuprous chloride was added 150g, it was heated under nitrogen at 30 until starting material disappeared the reaction was cooled to room temperature, filtered impurities.The filtrate was distilled off under reduced pressure and toluene was added 100mL of methylene chloride and methanol to precipitate the product catalyst 5L solid was filtered and dried to give the final catalyst 330g, 65% yield.

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; Shanghai Keqin Technology Co., Ltd.; Zhang Wei; Wu Jiang; Zhu Chunyin; (26 pag.)CN106939026; (2017); A;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

A mixture of [RuCl2(PPh3)3] (166.8 mg, 0.1740 mmol) and amide-LH2 (68.8 mg, 0.168 mmol) in dichloromethane (10 mL) was stirred for 16 h at room temperature. After removal of the solvent, recrystallization from THF-hexane (5 mL/15 mL) afforded 2b¡¤2THF¡¤hexane as red crystals. The thoroughly dried sample was found to lose the solvating molecules on the basis of 1H NMR spectroscopy and combustion analysis. Yield: 156.8 mg (0.07088 mmol, 84%). 1H NMR (CDCl3): delta 1.18 (s, 36H, CMe3), 6.91 (t, 24H, J = 7.5, PPh3), 7.04 (d, 4H, 4JHH = 2.2, pyrazole CH), 7.13 (t, 12H, JHH = 7.0, PPh3), 7.21 (d, 4H, 3JHH = 7.7, 3- and 5-C5H3N), 7.30-7.34 (m, 24H, PPh3), 7.59 (t, 2H, 3JHH = 8.0, 4-C5H3N), 10.33 (br s, 4H, NH), 12.41 (br d, 4H, 4JHH = 2.4, NH). 31P{1H} NMR (CDCl3): delta 35.3 (s). IR (KBr): 1687 cm-1 (C=O). Anal. Calc. for C114H114Cl4N14O4P4Ru2: C, 61.90; H, 5.19; N, 8.86. Found: C, 62.18; H, 5.44; N, 8.51%., 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Nakahara, Yoshiko; Toda, Tatsuro; Kuwata, Shigeki; Polyhedron; vol. 143; (2018); p. 105 – 110;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 246047-72-3

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

Example 3 SYNTHESIS OF THE COMPLEX 3 ACCORDING TO THE INVENTION [0078] The commercially available complex G (200 mg, 0.24 mmol) was placed in a flask, to which methylene chloride was added (6 ml). This was followed by adding the compound of the formula: (63 mg, 0.47 mmol) and tricyclohexylphosphine (132 mg, 0.47 mmol). The resulting solution was stirred at a temperature of 40 C. for 5 hours. The reaction mixture was introduced at the top of a chromatographic column packed with silica gel (eluent: ethyl acetate/cyclohexane, 0 to 10 vol. %). After evaporating the solvents, the complex 3 was obtained as a green solid (140 mg, 72% yield). [0079] 1H NMR (500 MHz, CD2Cl2) delta ppm: 15.85 (s, 1H), 7.07 (s, 1H), 7.00-6.96 (m, 3H), 6.66 (d, J=8.4 Hz, 1H), 6.44 (dd, J=7.7, 1.4 Hz, 1H), 6.24 (s, 1H), 6.20 (t, J=7.2 Hz, 1H), 4.01-3.96 (m, 1H), 3.83-3.70 (m, 2H), 3.64-3.59 (m, 1H), 2.63 (s, 3H), 2.54 (s, 3H), 2.50 (s, 3H), 2.35 (s, 3H), 2.27 (s, 3H), 1.66-1.50 (m, 13H), 1.29 (s, 3H), 1.11-0.70 (m, 20H). 13C NMR: (125 MHz, CD2Cl2) delta ppm: 281.36, 222.21, 221.66, 180.31, 148.30, 139.54, 139.17, 138.78, 137.63, 137.32, 136.98, 134.69, 130.23, 130.05, 129.70, 129.00, 122.38, 116.17, 111.26, 32.52, 32.39, 29.45, 28.92, 28.23, 28.15, 28.12, 28.04, 27.34, 27.03, 21.33, 21.14, 19.40, 18.92, 18.66, 16.76. 31P NMR (124.5 MHz, CDCl3) delta ppm: 29.11., 246047-72-3

As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Patent; Skowerski, Krzysztof; Bieniek, Michal; US2015/158896; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1-Phenyl-1,2,3,4-tetrahydroisoquinoline

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

The ruthenium-catalysts compound, cas is 15529-49-4 name is Dichlorotris(triphenylphosphino)ruthenium (II), mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

Synthesis of the new ruthenium promoters 4 and 10 was carried out in this work. For the synthesis of complex 4 a THF solution of the thalium salt of the Schiff base ligand [20] was added the equivalent amount of Cl2Ru(PPh3)3 and the mixture stirred overnight at room temperature. After work-up [11b,20] the solid residue was dissolved in a minimal amount of toluene, reprecipitated with pentane, filtered off, briefly washed on the funnel with pentane and dried in vacuo to afford an orange-brown powder (78% yield) which was stored under inert atmosphere. 1H NMR (300 MHz, CDCl3): delta 2.36 [s, 3H, CH3]; 7.10-7.80 [m, 34H, aryl-CH]; 9.95 ppm (s, 1H, aldimine ligand).

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Dragutan, Ileana; Ding, Fu; Sun, Ya-Guang; Verpoort, Francis; Dragutan, Valerian; Journal of Molecular Catalysis A: Chemical; vol. 386; (2014); p. 86 – 94;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI