Brief introduction of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

A mixture of (0421) [RuCl2(COD)]n (359 mg, 1.281 mmol), PPh3 (336 mg, 1.281 mmol) and ligand la (341 mg, 1.281 mmol) was stirred in THF (15 ml) at 75 C for 39 h in a KONTES pressure tube. After cooling down, the resulting brick precipitate was collected on a filter frit, washed with diethyl ether (3 >< 5 ml) and vacuum dried. Recrystallization from hot dichloromethane following layering with diethyl ether afforded analytically pure complex A-l in 29% yield (260 mg). As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role. Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 918870-76-5

The synthetic route of 918870-76-5 has been constantly updated, and we look forward to future research findings.

918870-76-5, Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a glovebox 13 (800 mg, 1.09 mmol) and AgOCN (374 mg, 2.51 mmol) were suspended in 10 ml of tetrahy-drofuran. The mixture was stirred for three hours at room temperature, and then the solvent was removed under vacuum.The residual was dissolved in dichloromethane and filtered through a short pad of silica gel using dichloromethane/diethylether (9:1) as eluent. The green solution containing complex 14 was concentrated under vacuum and the compoundwas precipitated with pentane at room temperature. The green solid was isolated by cannula filtration and washed threetimes with pentane. The solid was transferred in a glovebox and dried under argon atmosphere (744 mg, 91 % of yield).1H NMR (600.17 MHz, CD2Cl2): delta = 16.25 (br s, 1 H), 7.95 (dd, J = 8.6, 2.2, 1 H), 7.24 (d, J = 2.2, 1 H), 7.14 (br s, 4 H),6.99 (d, J = 8.6, 1 H), 4.94 (sep, J = 6.1, 1 H), 4.19 (s, 4 H), 2.27 (s, 6 H), 2.43 (s, 6 H), 2.41 (s, 12 H), 1.11 (d, J = 6.1,6 H). 13C{1H} NMR (150.91 MHz, CD2Cl2): delta= 295.12, 207.94, 155.24, 143.75, 139.94, 139.26, 135.84, 135.21, 131.02,129.94, 129.29, 121.57, 113.36, 76.88, 51.86, 38.07, 21.17, 20.78, 18.45. HRMS (ESI+), m/z: 767.19735 [M+Na]+;calculated for C35H43N5NaO599RuS: 767.19420.

The synthetic route of 918870-76-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bergen Teknologioverf¡ãring AS; Jensen, Vidar Remi; Occhipinti, Giovanni; EP2826783; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 50982-12-2

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

A common heterocyclic compound, the ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II),cas is 50982-12-2, mainly used in chemical industry, its synthesis route is as follows.

Next, 31.56 g of this (eta-1,5-cyclooctadiene)ruthenium(II) dichloride, 34.97 g of sodium carbonate, 28 mL of 2,4-pentanedione and 100 mL of N,N-dimethylformamide were placed in a nitrogen-flushed three-neck flask and stirred at 140 C. for 1 hour. Following reaction completion, the solution was cooled to room temperature, then alumina column chromatography (developing solvent: diethyl ether) was carried out. The resulting solution was concentrated, after which 120 mL of water was added and the solution was left at rest for 3 hours. The crystals that precipitated out were collected by filtration, and after being washed with water, were dried in vacuo. 46.53 g of bis(2,4-pentanedionato)(eta-1,5-cyclooctadiene)ruthenium(II) was obtained as an orangey-yellow solid. The yield was 94 wt %.

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2012/282414; (2012); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1,3-Bisbenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 10049-08-8

The ruthenium-catalysts compound, name is Ruthenium(III) chloride,cas is 10049-08-8, mainly used in chemical industry, its synthesis route is as follows.

Step 1 To a solution of 2-(4,4-dimethyl-chroman-7-yl)-heptan-1-ol (0.27 g, 0.98 mmole, from Example 1, step 6) in a mixture of 2 mL of carbon tetrachloride, 2 mL acetonitrile and 3 mL water, containing 3-5 mg of ruthenium chloride, was added 0.85 g of sodium periodate. The mixture was stirred at room temperature for 2 hours, diluted with 10 mL of water, and pH was adjusted to 2 with 10percent hydrochloric acid. The mixture was extracted with three 10 mL portions of dichloromethane. The organic phase was dried over MgSO4, filtered and concentrated in vacuo to give a dark oil. The product was purified by flash chromatography (SiO2, gradient from 0 to 20percent ethyl acetate in hexanes) to yield 0.16 g of 2-(4,4-dimethyl-chroman-7-yl)-heptanoic acid as a pale yellow oil.

As the rapid development of chemical substances, we look forward to future research findings about 10049-08-8

Reference£º
Patent; Syntex (U.S.A.) LLC; US2003/158178; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

The ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II),cas is 50982-12-2, mainly used in chemical industry, its synthesis route is as follows.

Separately, 200 ml of well dried tetrahydrofuran was fed to a 500 ml flask whose inside had been substituted by argon, and 5 g of dichloro(cyclooctadienyl)ruthenium was injected into the flask and well mixed with the above tetrahydrofuran to obtain a suspension. This suspension was cooled to -78 C. in a stream of argon, and 15 ml of the above synthesized tetrahydrofuran solution of trifluoromethyl cyclopentadienyl sodium was added dropwise to the suspension over 1 hour. The reaction mixture was further stirred at -78 C. for 3 hours and returned to room temperature under agitation over 12 hours. After the reaction mixture was let pass through a neutral alumina column in a stream of argon to be purified and concentrated, it was purified again by a neutral alumina column to obtain 0.2 g of bis(trifluoromethylcyclopentadienyl)ruthenium (yield rate of 30%).

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2006/240190; (2006); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of (S)-4-Benzylthiazolidine-2-thione

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

The ruthenium-catalysts compound, cas is 50982-12-2 name is Dichloro(cycloocta-1,5-diene)ruthenium(II), mainly used in chemical industry, its synthesis route is as follows.

A solution of (tBu2PCH2CH2)2NH (1 .0 g, 2.77 mmol) was added to [RuCl2(cod)]n (0.775 g, 2.77 mmol) and the resulting suspension stirred for 4 hours underargon. This was followed by the addition of 4-methoxyphenyl isonitrile (368 mg,2.77 mmol) and the mixture refluxed for 15 hours under argon. It was cooled to room temperature and ether (40 ml) added, and the suspension stirred for 1 hour at room temperature. It was filtered, washed with ether and dried under vacuum. Yield = 1 .44 g. X-ray quality crystals were obtained by slow diffusion of ether into a CH2CI2 solution of the compound.

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; HADEED, Gerald, S.; ABDUR-RASHID, Kamaluddin; (61 pag.)WO2018/193401; (2018); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 203714-71-0

203714-71-0 Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II) 10941020, aruthenium-catalysts compound, is more and more widely used in various.

203714-71-0, Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

NHC ligand precursor 21 (9 mg, .03 mmol), KOz-Bu(F6) (6 mg, .03 mmol), and ruthenium complex 911 (13 mg, .02 mmol) were all combined in CgDbeta in a screw cap NMR tube in a glove box. The NMR tube was removed and heated at 600C for 2.5 hour in a fume hood. Conversion to catalyst 22 was determined to be 14% by proton NMR. 1H NMR (300 MHz, CDCl3) delta 17.19 (IH, s).

203714-71-0 Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II) 10941020, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; MATERIA, INC.; CALIFORNIA INSTITUTE OF TECHNOLOGY; WO2007/75427; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about Dichloro(cycloocta-1,5-diene)ruthenium(II)

With the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

A nitrogen-flushed three-neck flask was charged with 65.36 g of ruthenium trichloride trihydrate, 500 mL of ethanol and 250 mL of 1,5-cyclooctadiene, and the flask contents were refluxed under heating at 85 C. for 5 hours. Following the completion of refluxing, the solution was cooled to room temperature, after which filtration was carried out. The resulting solid was washed with 500 mL of diethyl ether and dried in vacuo, yielding 70.02 g of (eta-1,5-cyclooctadiene)ruthenium(II) dichloride as a brown solid. Next, 2.81 g of this (eta-1,5-cyclooctadiene)ruthenium(II) dichloride, 6.38 g of sodium carbonate, 2.9 mL of methyl 3-oxo-4,4,4-trifluorobutanoate and 10 mL of ethanol were placed in a nitrogen-flushed three-neck flask and refluxed under heating at 85 C. for 2 hours. Following the completion of refluxing, the solution was cooled to room temperature, then alumina column chromatography (developing solvent: acetone) was carried out. The resulting solution was concentrated and dried under reduced pressure, and 3.61 g of bis(methyl-3-oxo-4,4,4-trifluorobutanato)(eta-1,5-cyclooctadiene)ruthenium(II) was obtained as a black reddish-brown liquid. The yield was 66 wt %.

With the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2012/282414; (2012); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 203714-71-0

With the rapid development of chemical substances, we look forward to future research findings about 203714-71-0

Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II), cas is 203714-71-0, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

A dry, 1000-mL, one-necked, round-bottomed flask is equipped with a magnetic stirring bar, rubber septum and an argon inlet. The flask is charged under an argon atmosphere with a solid SIMES x HBF4 2 (35.28 mmol, 13.9 g) and dry n-hexane (400 ml_). A solution of potassium tert-amylate (21.6 ml_, 36.75 mmol) is added from a syringe and the resulting mixture is stirred under argon at room temperature for 1 h. To the resulted solution a solid Hoveyda-Grubbs 1st generation catalyst 1 (29.4 mmol, 17.6 g) is added in one portion. The flask is equipped with a reflux condenser with an argon inlet at the top and the reaction mixture is refluxed for 2 h. The contents of the flask are cooled to room temperature and solid CuCI (51.45 mmol, 5.1 g) is added slowly in three portions and the resulting mixture is refluxed for 2 h. From this point forth, all manipulations are carried out in air.; 1.11. Isolation of the product by crystallization; The reaction mixture is evaporated to dryness and re-dissolved in ethyl acetate (200 ml_). The solution is filtrated through a Buchner funnel with glass frit filled with Celite and then concentrated in vacuo. The residue is dissolved in ambient temp. 1 :10 v/v mixture of CH2CI2 and methanol (220 ml_). After concentration to ca. % of the initial volume using a rotary evaporator (room temperature) crystals are precipitated. These crystals are filtered- off on a Buchner funnel with glass frit. The crystals are washed twice with small portions of CH3OH (-20 ml_), and dried in vacuo to give pure Hoveyda 2nd catalysts 3 (25.3 mmol, 15.81 g). The filtrate after crystallization is evaporated to dryness and crystallized for the second time from CH2CI2 and methanol using the same protocol giving an additional crop of pure Hoveyda 2nd generation catalyst (1.7 mmol, 1.08 g). The total yield of pure Hoveyda-Grubbs 2nd generation catalyst 3 is 92% (27.0 mmol, 16.9 g).

With the rapid development of chemical substances, we look forward to future research findings about 203714-71-0

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG; WO2007/54483; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

50982-12-2, Dichloro(cycloocta-1,5-diene)ruthenium(II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Dichloro(1,5-cyclooctadiene)ruthenium (4.0 g, 0.014 moles), tricyclohexylphosphine (8.4 g, 0.030 moles), degassed triethylamine (2 mL), and degassed sec-butanol (60 mL) were combined in a pressure bottle under argon. The pressure bottle was purged with hydrogen gas, pressurized to 60 psi, and the mixture heated to 80 C. for 18 hours (the bottle was repressurized as needed to maintain 60 psi hydrogen). The reaction mixture was then allowed to cool down and the hydrogen gas was vented off. Degassed methanol (60 mL) was added to the orange slurry and the filtrate decanted off via stick filtration under argon to leave an orange solid in the bottle, which was washed with degassed methanol (60 mL). Degassed toluene (60 mL) was added to the orange solid and the orange slurry cooled to 0 C. Degassed 3-chloro-3-methyl-1-butyne (1.7 mL, 0.015 moles) was added dropwise via syringe at 0 C. The orange slurry progressively turned to a maroon slurry, while gas bubbled away. The mixture was stirred at room temperature for 2 hours after addition was complete. Ligand precursor [ 2] (18 g, 0.102 moles) was then charged and the mixture was heated to 80 C. and sparged with argon for 3 days (degassed toluene was added as needed). The brown slurry was allowed to cool to room temperature and a mixture of 30 mL methanol and 10 mL of concentrated hydrochloric acid was added in air with mixing. After stirring for 15 minutes at room temperature, the two phases were allowed to separate and the methanol phase was decanted off. Trituration with methanol (2¡Á50 mL) gave a solid, which was collected on a frit and washed with more methanol (2¡Á20 mL). The brown solid was then washed with hexanes (2¡Á20 mL) and dried to give [ 8] (5.1 g, 0.085 moles) in 61% yield.

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

Reference£º
Patent; MATERIA, INC.; Pederson, Richard L.; Woertink, Jason K.; Haar, Christopher M.; Gindelberger, David E.; Schrodi, Yann; (13 pag.)US9504997; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI