Simple exploration of 10049-08-8

The synthetic route of 10049-08-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.10049-08-8,Ruthenium(III) chloride,as a common compound, the synthetic route is as follows.

[(1S,3R)-1-(Methoxycarbonylamino-methyl)-3-methyl-cyclopentyl]-acetic acid ((1S,3R)-1-Benzyl-3-methyl-cyclopentylmethyl)-carbamic acid methyl ester (2.6 g, 9.9 mmol) and sodium periodate (29.8 g, 140 mmol) were stirred together in carbon tetrachloride (30 mL), acetonitrile (30 mL), and water for 6 hours. The mixture was cooled to 0¡ã C., and ruthenium(III) chloride (0.04 g, 0.2 mmol) was added to the reaction mixture. The reaction was allowed to warm to room temperature and stirred for 20 hours. Diethyl ether (50 mL) was added, and the mixture was then extracted with saturated aqueous sodium hydrogen carbonate (200 mL). The aqueous layer was acidified to pH 1 with 4N hydrochloric acid and re-extracted with ethyl acetate (200 mL), dried (MgSO4), and the solvent was evaporated under reduced pressure. The residue was purified by chromatography (silica gel, eluding with a gradient of heptane to 1:1 heptane:ethyl acetate) to give 0.32 g (14percent) of [(1S,3R)-1-(methoxycarbonylamino-methyl)-3-methyl-cyclopentyl]-acetic acid; Rf (heptane-ethyl acetate, 8:2) 0.30; IR thin film (cm-1) 3338 (NH), 1712 (C=O); 1H-NMR (400 MHz; CDCl3): delta 9.29 (1H, s, COOH), 5.17 (1H, bs, NH), 3.71 (3H, s, OMe), 3.30 (1H, dd, J 14.4, 7.1, CHAHBNH2), 3.17 (1H, dd, J 14.4, 6.6, CHAHBNH2), 2.37 (2H, s, CH2COOH), 2.20-1.00 (7H, m), 1.01 (3H, d, J 6.4, CHMe); MS (ES+) m/z 230 (M+H, 63percent), 481 (M+Na,100).

The synthetic route of 10049-08-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bryans, Justin Stephen; Blakemore, David Clive; Williams, Sophie Caroline; US2003/69438; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 10049-08-8

#N/A

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.10049-08-8,Ruthenium(III) chloride,as a common compound, the synthetic route is as follows.

Step 1 To a solution of 2-(4,4-dimethyl-chroman-7-yl)-heptan-1-ol (0.27 g, 0.98 mmole, from Example 1, step 6) in a mixture of 2 mL of carbon tetrachloride, 2 mL acetonitrile and 3 mL water, containing 3-5 mg of ruthenium chloride, was added 0.85 g of sodium periodate. The mixture was stirred at room temperature for 2 hours, diluted with 10 mL of water, and pH was adjusted to 2 with 10percent hydrochloric acid. The mixture was extracted with three 10 mL portions of dichloromethane. The organic phase was dried over MgSO4, filtered and concentrated in vacuo to give a dark oil. The product was purified by flash chromatography (SiO2, gradient from 0 to 20percent ethyl acetate in hexanes) to yield 0.16 g of 2-(4,4-dimethyl-chroman-7-yl)-heptanoic acid as a pale yellow oil.

#N/A

Reference£º
Patent; Syntex (U.S.A.) LLC; US2003/158178; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 50982-12-2

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

0.25 g of metal sodium was mixed with well dried tetrahydrofuran in a 100 ml flask whose inside had been substituted by nitrogen and cooled to -78 C. A solution of 1.3 g of trimethylsilyl cyclopentadiene dissolved in 30 ml of tetrahydrofuran was added dropwise to the above solution in a stream of nitrogen over 1 hour and heated to room temperature under agitation over 3 hours to obtain a tetrahydrofuran solution of trimethylsilyl cyclopentadienyl sodium. Separately, 18 ml of a tetrahydrofuran solution (2.0 mol/l) of cyclopentadienyl sodium was prepared. Further separately, 5 g of dichloro(1,5-cyclooctadienyl)ruthenium was dissolved in 200 ml of well dried tetrahydrofuran in a 500 ml flask whose inside had been substituted by nitrogen. This solution was cooled to -78 C., and the above tetrahydrofuran solution of trimethylsilyl cyclopentadienyl sodium and the above tetrahydrofuran solution of cyclopentadienyl sodium were added dropwise to the solution at the same time in a stream of nitrogen over 1 hour. The resulting solution was stirred at -78 C. for 3 hours and heated to room temperature under agitation over 12 hours. After the resulting solution was let pass through a neutral alumina column in an argon gas atmosphere to be purified and concentrated, it was separated and purified by a neutral alumina column again to obtain 0.23 g of trimethylsilyl cyclopentadienyl(cyclopentadienyl)ruthenium (yield rate of 4.3%).

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; JSR Corporation; US2006/240190; (2006); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 301224-40-8

301224-40-8 (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride 11763533, aruthenium-catalysts compound, is more and more widely used in various.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

HII 65 HII (200mg) and P(0’Pr)3 (5eq) were stirred in for 72h. The crude 65 was recrystallised from DCM/pentane. (400MHz, 298K): 16.05 (d, 1 H, J = 35.3 Hz, C=CH), 10.24 (d, 1 H, J = 9.7 Hz, Ph-H), 6.87-6.83 (m, 2H, Ph-H), 6.78 (s, 1 H, Ph-H), 6.61 (s, 1 H, Ph-H), 6.19-6.16 (m, 2H, Ph- H), 4.67 (brs, 2H, PO-CH-CH3), 4.09-4.06 (m, 1 H, Ph-0-CH-CH3), 4.04 (brs, 1 H, PO- CH-CH3), 3.43-3.40 (m, 1 H), 3.16-3.02 (m, 3H), 2.89 (s, 3H, Mes-CH3), 2.58 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.18 (s, 3H, CH3), 1.92 (s, 3H, CH3), 1.48- 0.80 (m, 24H, PO-CH-CH3).31P{1H} (121.49MHz, 298K): 128.7 (s)

301224-40-8 (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride 11763533, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS; CAZIN, Catherine; WO2011/117571; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 50982-12-2

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

A nitrogen-flushed three-neck flask was charged with 65.36 g of ruthenium trichloride trihydrate, 500 mL of ethanol and 250 mL of 1,5-cyclooctadiene, and the flask contents were refluxed under heating at 85 C. for 5 hours. Following the completion of refluxing, the solution was cooled to room temperature, after which filtration was carried out. The resulting solid was washed with 500 mL of diethyl ether and dried in vacuo, yielding 70.02 g of (eta-1,5-cyclooctadiene)ruthenium(II) dichloride as a brown solid. Next, 2.81 g of this (eta-1,5-cyclooctadiene)ruthenium(II) dichloride, 6.38 g of sodium carbonate, 2.9 mL of methyl 3-oxo-4,4,4-trifluorobutanoate and 10 mL of ethanol were placed in a nitrogen-flushed three-neck flask and refluxed under heating at 85 C. for 2 hours. Following the completion of refluxing, the solution was cooled to room temperature, then alumina column chromatography (developing solvent: acetone) was carried out. The resulting solution was concentrated and dried under reduced pressure, and 3.61 g of bis(methyl-3-oxo-4,4,4-trifluorobutanato)(eta-1,5-cyclooctadiene)ruthenium(II) was obtained as a black reddish-brown liquid. The yield was 66 wt %.

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; JSR Corporation; US2012/282414; (2012); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

1,2-closo-C2B10H12 (0.400 g, 2.77 mmol) was dissolved in degassed THF (35 mL). Na metal (0.300 g, 13.04 mmol) and naphthalene (ca. 15 mg) were added and the solution stirred overnight. The resulting dark green solution was transferred via a gas-tight syringe into a second Schlenk tube containing [RuCl2(COD)]x (0.650 g, 2.32 mmol) and a large excess of naphthalene. The resulting brown mixture was heated at reflux for 90 min then allowed to cool to room temperature. The brown mixture was filtered through a short silica column eluting with DCM to afford a brown solution, removal of solvent from which yielded a brown solid. This was further purified by column chromatography (1:2 DCM:40-60 petroleum ether), giving a yellow band, followed by preparative TLC (4:3 DCM:40-60 petroleum ether, Rf 0.55) yielding, as major product C12H20B10Ru requires C 38.59, H 5.40. Found: C 38.01, H 5.67%.

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

Reference£º
Article; Scott, Greig; Ellis, David; Rosair, Georgina M.; Welch, Alan J.; Journal of Organometallic Chemistry; vol. 721-722; (2012); p. 78 – 84;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

General procedure: The following common procedure was followed for the synthesesof complexes 1-5: A mixture of the ligand (0.36 mmol) and Ru(1,5-cod)Cl2(0.36 mmol) was dissolved in dry ethanol (10 ml) and the resultingmixture was refluxed for 2 h. The reaction volume was concentratedto a third of its original volume and the suspension was keptat 4 C overnight to give brick red solid which was filtered off,washed with cold ethanol and then diethyl ether. The solid wasdissolved in chloroform and excess of n-hexane was added toinduce the precipitation of the brick red solid product.2.3.1. [RuCl2(1,5cod) (L1)] (1)L1 (0.36 mmol, 66 mg) and Ru(1,5-cod)Cl2 (0.36 mmol,100 mg). Yield: 72% (120 mg). Mp. 220.0 C (dec. turns black withoutmelting). 1H NMR (400 MHz, CDCl3, 25 C, ppm) delta = 8.45 (s, 1H,imine CH), 8.25 (d, 1H, JH-H = 5.16 Hz, a proton of Py), 8.01-7.94(m, 2H, Py), 7.58-7.54 (m, 1H, Py), 7.82 (d, 2H, JH-H = 7.56 Hz,Ph), 7.39-7.34 (m, 3H, Ph), 4.75-4.74 (m, 2H, -CH, cod), 4.15-4.11 (m, 2H, -CH, cod), 2.74-2.57 (m, 4H, -CH2, cod), 2.20-2.14(m, 2H, -CH2, cod), 2.06-2.00 (m, 2H, -CH2, cod). 13C NMR(100 MHz, CDCl3, 25C, ppm) delta = 168.04 (imine C-H), 156.70(Py), 150.60 (Py), 149.44 (Py), 138.11 (Py), 135.94 (Py), 129.02(Ph), 128.93 (Ph), 127.88 (Ph), 127.80 (Ph), 120.81 (Ph), 92.25,91.87 (C, -CH, cod), 29.64, 29.22 (C, -CH2, cod). FT-IR (c/cm1):(cod, CC) 3038-2829 (m), (CN) 1594 (s), 1203 (s), 767 (s), 702(s). UV-Vis (dichloromethane, v/v): kmax (nm) = 229, 292, 345,439. HR-Mass (TOF MS ES+) C20H22N2Ru calculated: 393.0810,found: 393.0815. Anal. Calc. for C20H22Cl2N2Ru: C, 51.95; H, 4.80;N, 6.06. Found: C, 51.87; H, 5.10; N, 6.33.

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

Reference£º
Article; Thangavel, Saravanan; Rajamanikandan, Ramar; Friedrich, Holger B.; Ilanchelian, Malaichamy; Omondi, Bernard; Polyhedron; vol. 107; (2016); p. 124 – 135;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 50982-12-2

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

50982-12-2, Dichloro(cycloocta-1,5-diene)ruthenium(II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of [RuCl2(COD)]n (309 mg, 1.103 mmol), PCy3 (309 mg, 1.103 mmol) and la (294 mg, 1.103 mmol) was stirred in toluene (10 ml) at 115 C for 48 h in a KONTES pressure tube. After cooling down, the brick colored precipitate was collected on a filter frit, washed with Et20 (3 x 10 ml) and vacuum dried to afford 642 mg of the crude material. To the crude material was added CH2C12 (~ 32 ml) and the obtained mixture was brought to reflux and filtered using a Whatman syringe filter (PTFE membrane, pore size 0.45 muiotaeta). Layering the obtained red-brown solution with Et20 (125 ml) afforded 327 mg (41%) of the product as a pink-brown powder after 5 days. Elem. Anal.: Calcd for C32H55Cl2N2OPRuS (718.81): C, 53.47; H, 7.71; N, 3.90%. Found: C, 53.11; H, 8.00; N, 3.86%. 31P{1H} (162 MHz, CD2C12, r.t.): delta 24.0 (s). 1H NMR (400 MHz, CD2C12, r.t.): delta 0.09 (brs, 1H), 0.92 (brs, 2H), 1.04-1.63 (m, 15H), 1.63-2.05 (m, 9H), 2.10-2.45 (brs, 3H), 2.45-2.70 (brs, 1H), 2.83-3.28 (overlapped, 7H), 3.31-3.56 (overlapped, 6H), 3.56-3.90 (overlapped, 4H), 3.98 (t, J~ 8 Hz, 1H), 5.57 (brs, NH, 1H), 7.31 (t, J~ 7 Hz, 2H), 7.38 (t, J~ 6 Hz, 1H), 8.15 (d, J~ 7 Hz, 2H). 13C{1H} selected for the coordinated NNS ligand (100.5 MHz, CD2C12, r.t.): delta 46.6 (s, 1C), 46.8 (s, 1C), 48.3 (s, 1C), 53.9 (s, 1C, overlapped with CD2C12 peak), 54.8 (s, 1C), 60.0 (s, 1C), 60.7 (s, 1C), 61.7 (s, 1C), 128.1 (s, 2Cmeta, Ph), 129.3 (s, Cpam, Ph), 134.9 (s, 2Cortho, Ph), 138.0 (s, Cipso, Ph).

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a glove box, a flask was charged with Ru complex 4 or 5 and Ag salt 3. Anhydrous degassed CH2Cl2 was then added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off through a Celite layer and washed with anhydrous (2mL). The solution was diluted with anhydrous hexane (10mL) and remaining precipitated Ag salt was again filtered off. Evaporation of the solvents on a rotary vacuum evaporator (40C, 1h, 25kPa) and finally at oil pump vacuum (25C, 1h, 1kPa) gave the products 1 or 2.

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lipovska, Pavlina; Rathouska, Lucie; ?im?nek, Ond?ej; Ho?ek, Jan; Kola?ikova, Viola; Ryba?kova, Marketa; Cva?ka, Josef; Svoboda, Martin; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 191; (2016); p. 14 – 22;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Hoveyda-Grubbs 2nd generation catalyst (19mg; 0.03mmol) was added to a solution of dien 7 (100mg; 0.31mmol) and styrene (2.48mmol) in dichloroethane (5mL). The reaction mixture was heated at 80C for 5h. Then, another portion of H-G catalyst (19mg; 0.03mmol) was added and the reaction mixture was heated at 80C for additional 5h. Then, the solvent was evaporated and crude solid was purified by column chromatography on silica gel (mobile phase – 3% ethyl acetate in cyclohexane, Rf of products 0.18-0.25). In some cases, stated in each experiment, HPLC had to be used due to very close retention time of product and starting material (mobile phase – 0.5% ethyl acetate in cyclohexane).

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Korinkova, Petra; Bazgier, Vaclav; Oklestkova, Jana; Rarova, Lucie; Strnad, Miroslav; Kvasnica, Miroslav; Steroids; vol. 127; (2017); p. 46 – 55;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI